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Abstract
Purpose: Many have made proposals to better diagnose and/or classify post-stroke apraxia of
speech (AOS), with some arguing for the separation of AOS into behavioral subtypes. Recent
studies of primary progressive AOS have promoted a separation of prosodic and phonetic
subtypes, aligning with a dual-motor coordination model separating the neural substrates of
prosodic and phonetic function. Motivated by the limited corroboration of these subtypes in post-
stroke AOS, here we present mapping resultsin a cohort of stroke survivors aiming to identify
distinct neural substrates for prosodic and phonetic aspects of speech motor coordination.
Methods: Left-hemisphere stroke survivors (n = 127; 64 with AOS) received speech-language
evaluation and neuroimaging at the Center for the Study and Treatment of Aphasia Recovery (C-
STAR). AOS severity was quantified via the Apraxia of Speech Rating Scale (ASRS). We
utilized anovel lesion-symptom mapping technique with an emphasis on prediction that
identifies ensembles of regions supporting performance in the prosodic and phonetic domains.
Results: An ensemble of networks supporting prosodic function localized to dorsal and ventral
(but primarily dorsal) sensorimotor cortex, as well as a distributed network of white matter
pathways connecting Rolandic cortex to auditory regions and cerebellum, emphasizing the role
of auditory feedback processing and laryngeal control in supporting prosodic function. A
separate but partially overlapping network supporting phonetic function localized primarily to
ventral Rolandic cortex and the arcuate fasciculus.
Conclusions: Thiswork represents the first mapping of prosodic and phonetic subtypes in post-
stroke AOS in alarge cohort of individuals. We hope our results motivate the devel opment of
assessment and treatment techniques individually targeting prosodic and phonetic functioning to

better serve individuals with AOS and facilitate clinical discussion of the disorder.
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Introduction

Speech production is a complex, multistage process. Psycholinguists have identified at
least three stages involving the access of conceptual semantic, word (or morpheme), and
phonological information (Levelt, 1993). Beyond these stages, research on speech motor control
has identified two additional broad stages, a premotor level involved in some form of speech
planning or multi-effector coordination, and a lower, primary motor level involved in execution
(Guenther, 2016; Hickok, 2012). A recent theoretical synthesis has argued that the post-linguistic
levels of processing are subdivided into two paralel hierarchies, one for phonetic articulation
and one for voice pitch and prosody control (Hickok et al., 2023). The phonetic articulation
system is hypothesized to involve premotor cortex on the precentral gyrus (the ventral precentral
speech area, VPCSA) coordinating orofacial motor cortex, while the pitch/prosody systemis
hypothesized to involve a more dorsal precentral speech area (dPCSA) located just posterior to
the middle frontal gyrus and overlapping area 55b (Glasser et al., 2016).

As lesion studies remain one of the only causal methods in cognitive neuroscience,
cohorts with impaired motor speech coordination following neurological impairment offer an
opportunity to test this hypothesis of adual motor coordination hierarchy. In particular, people
with apraxia of speech (AOS), a communication disorder primarily characterized as a difficulty
with motor coordination (Darley, 1968; Johns & Darley, 1970; McNell & Kimelman, 2001), may
show different profiles of behavioral impairment with corresponding damage to the different
pathways of motor speech coordination proposed in Hickok et al., 2023. A few published case
studies have shown that surgical resection in the dorsal precentral gyrus, near the dPCSA, results
in apraxia of speech with noticeable prosodic deficits (Chang et al., 2020; p.c. with authors of

Levy et al., 2023, December 16, 2024). Studies of prosodic and phonetic ability in people with
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post-stroke AOS are limited to a single study with asmall sample size (N = 8) that did not divide
the precentral gyrusinto the proposed dorsal and ventral components representing the prosodic
and phonetic elements of motor coordination (respectively), instead subdividing these functions
along an anterior/posterior split in precentral gyrus (Takakuraet al., 2019).

AOS s considered difficult to differentially diagnose from dysarthria and expressive
aphasia (Kobayashi & Ugawa, 2013; Patidar et al., 2013; Polanowska & Pietrzyk-Krawczyk,
2016; Ziegler et al., 2012), in part due to disagreement surrounding the primary diagnostic
criteriaof AOS (Haley et al., 2021) and whether or not AOS is divisible into behavioral subtypes
(Mailend & Maas, 2020). Of particular interest to the current study is the debate surrounding
subtypes of AOS: if there are indeed distinct, separable subtypes of behavioral impairment
present in what is currently referred to monolithically as AOS, such subtypes should have
separable neurobiological patterns of impai rment.

Two subtypes proposed in neurodegenerative primary progressive apraxia of speech
(PPAQOS) appear to align neuroanatomically and behaviorally with the prosodic and phonetic
motor coordination hierarchy (Josephs et al., 2013; Utianski et al., 2018). Prosodic PPAOS is
marked behaviorally by difficulties with speech rate and syllable segmentation and was
neuroanatomically localized in this study to the dorsal supplementary motor area (SMA) and
superior cerebellar peduncle. The foca area of atrophic overlap identified in Utianski et al., 2018
overlaps with the dPCSA presented in Hickok et al., 2023. Phonetic PPAOS, on the other hand,
ismarked behaviorally by distorted sound substitutions and a more distributed network of
impairment to the lateral SMA and precentral gyrus. While Utianski et al., 2018 localized
phonetic PPAOS to a more distributed network in sensorimotor cortex and the cerebellum, the

ventral precentral speech area (VPCSA) is still implicated within the region of atrophic overlap.
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With a growing body of evidence in the neurodegenerative literature for prosodic and phonetic
subtypes of PPAQOS, a recent theoretical model of motor speech aligning with this dichotomy,
and small-sample/case study results from lesion studies, the stage is set for a more detailed
analysis of prosodic and phonetic ability in people with post-stroke AOS.

The current study aims to provide just that: an exploration of the neural substrates of
prosodic and phonetic AOS in alarge cohort of stroke survivors. In doing so, we aim to provide
evidence for the hypothesis of prosodic and phonetic motor coordination hierarchies and
motivate the consideration of prosodic and phonetic subtypes in post-stroke AOS. Our cohort,
collected through the University of South Carolina' s Center for the Study of Aphasia Recovery
(C-STAR), congists of structural imaging and comprehensive behavioral assessment in 107
individuals with post-stroke aphasia as well as 20 control stroke survivors without
communication disorders. The Apraxia of Speech Rating Scale (ASRS; Strand et al.,(Strand et
a., 2014) served as the primary assessment of apraxia of speech in this dataset. We employed a
novel lesion-symptom mapping technique with an emphasis on predicting behavioral scoresin
held-out data to explicitly test the hypothesis that prosodic ability should localize to the dorsal
precentral gyrus near area 55b while phonetic ability should localize to the ventral precentral

gyrus just posterior of Brodmann area 44.
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M ethods
Participants

Datain this study are pulled from C-STAR’s Predicting Outcomes of Language
Rehabilitation (POLAR) study; see (Kristinsson et al., 2023) for a thorough discussion of the
dataset. Specificaly, this study makes use of the baseline assessment data, which were collected
and administered by ASHA-certified speech-language pathol ogists. Participants with left
hemisphere stroke and aphasia were recruited for the study along with 20 control participants
who were stroke survivors but without aphasia (N=127; Table 1). Participants underwent
comprehensive speech and language evaluation; the ASRS (Strand et al., 2014) served asthe
primary diagnostic measure for AOS; therefore, participants with incomplete ASRS evaluations
(N=4) were excluded from this study. 61 of the non-control participants (57%) had apraxia of
speech, arelatively high concentration; however, none of the participants had isolated AOS. This
isnot uncommon, as “pure” AOS is rare and mostly restricted in clinical discussion to case

studies (Chang et a., 2020; Levy et al., 2023).
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Characteristic (Categorical) Category Qty. (N=123) Percentage

Sex Female 56 45.5%
Male 67 54.5%

Race White 90 73.2%
Black or African American 32 26.0%
Asian 1 0.8%

Stroke type Ischemic 76 61.8%
Hemorrhagic 33 26.8%
Other 14 11.4%

Gross pathology Control (WNL) 20 16.3%
Aphasia only 35 28.4%
Aphasia & dysarthria 7 5.7%
Aphasia& AOS 39 31.7%
Aphasia, dysarthria, & AOS 22 17.9%

Aphasiatype (WAB) Anomic 29 23.6%
Brocal s 48 39.0%
Wernicke's 5 4.1%
Conduction 15 12.2%
Global 5 4.1%
Transcortical motor 1 0.8%

Characteristic (Numeric) Mean + SD ‘ Range ‘

Age (at stroke onset) 55.7+11.8 27-79

Age (at assessment) 60.4 + 10.8 29-80

Months post stroke onset 549+ 54.8 10- 241

Education (years) 155+24 12-20

WAB Aphasia Quotient 65.7 + 25.2 14.5-100

108 Table 1. Participant demographics.
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109 Behavioral Assessment

110 The original version of the Apraxia of Speech Rating Scale (ASRS-1; Strand et al., 2014)
111 was administered to evaluate the presence or absence of apraxia of speech (Figure 1A). The

112 ASRS does not have dedicated stimuli and isinstead scored by the speech-language pathologist
113 using all speech produced during other assessments and informal conversation. Items are scored
114 on afive-point scale (0 to 4), with ahigher value indicating more severe impairment (0 being the
115 absence of impairment) in that domain. The scaleis split into four sections. (1) primary

116 distinguishing features of AOS; (2) distinguishing features unless dysarthriais present; (3)

117 distinguishing features unless aphasiais present; and (4) distinguishing features unless dysarthria
118 and/or aphasia are present, reflecting the historic “process of elimination” diagnostic method for
119 AOS. These data were collected before a notable revision to the ASRS in 2023 (ASRS-3.5;

120 Duffy et al., 2023), which contains essentially the same content (save for three removed items)
121  but reorganized into new sections supporting the prosodic and phonetic subtypes of PPAOS.: (1)
122 phonetic features; (2) prosodic features; and (3) other (most in this category concern

123 diadochokinetic rate, acommon bedside evaluation for AOS). Because this updated organization
124 isaligned with our research question, we opted to generate scores for the ASRS-3.5 categories
125 using our ASRS-1 data (Figure 1B). This gives us subscores that correspond to prosodic and

126  phonetic ability directly; our sample contains a mixture of participants with impairmentsin one,
127  both, or neither of these domains (Figure 1D).

128 Because our research question concerns prosodic and phonetic abilities, we opted to use
129 our generated ASRS-3.5-style prosodic and phonetic subscores in subsequent analyses; however,
130 we wished to provide additional validation of the usage of these subscores in our data. To that

131 aim, we calculated itemwise correlations between all ASRS scores and then hierarchically
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clustered them using an agglomerative method. Aggregating scores within these clusters alowed
us to generate “subscores’ without a priori assumptions about the relative subdomains of
importance in AOS. We next generated a bootstrap distribution (2000 iterations) where data were
shuffled prior to hierarchical clustering to estimate within-branch item co-occurrence frequency
(Figure 1C). The two largest clusters closely aligned with our proposed prosodic and phonetic
subscores based on the ASRS-3.5 subscores: the first cluster correlated with the phonetic
subscore (r = 0.95; Figure 1F) and the second contained the exact same items as the prosodic
subscore (r = 1; Figure 1G). Because our apriori categories of “prosodic subscore” and
“phonetic subscore” mapped so strongly onto itemwise correlations in the data revealed through
unsupervised clustering, we believe that updating ASRS-1 scores to reflect ASRS-3.5 subscores

isavalid approach.
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Original ASRS-1 Item Grouping
Distorted sound substitutions — 1.1 B T
Distorted sound additions — 1.2

Increased distortions w/ utterance length - 1.3 .
Increase distortions w/ speech rate — 1.4
Inaccurate AMRs (e.g., “papapa’)-15
Reduced words per breath group - 1.6

Syllable segmentation errors, within word — 2.1
Syllable segmentation errors, across words — 2.2
Sound distortions — 2.3

Slow overall speech rate — 2.4

Lengthened C/V segments — 2.5

Lenghtned intersegment durations — 2.6
Distorted SMRs (e.g., “pa ta ka”") cf. AMRs - 3.1
Articulatory groping/false starts — 3.2

Sound or syllable repetitions — 4.1

Sound prolongations (beyond segments) — 4.2

AQS - primary distinguishing features
(no overlap with dysarthria or aphasia)

Distinguishing features unless dysarthria present

J Distinguishing features unless aphasia present

] Distinguishing features unless dysarthria
&/or aphasia present

% Freq.
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Phonetic 2
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Figure 1. Constructing prosodic and phonetic subscoresfrom Apraxia of Speech Rating Scaleitems.
A: Confusion matrix of itemwise correlations on the ASRS-1. The four subsections of the ASRS-1 are emphasized
using brackets to the right of the matrix. The origina subgroups of the ASRS-1 do not always result in strong intra-
group correlations across items; for example, item 1.6 does not correlate strongly with other itemsin “Primary
features of AOS,” while 2.3 does correlate strongly with the items of this group but isin a separate group (“ Features
of AOS unless dysarthria present”).
B: Another confusion matrix of itemwise correlations, but items are arranged based on subscores derived from
ASRS-3.5. There are stronger intra-group correlations across items compared to the ASRS-1 subscores, but there are
till some itemsthat correlate strongly outside their group identity (e.g., items 1.5 and 3.1 from the “Other” group
correlate moderately with items from the “Phonetic features’ group).
C: An dternative approach to ASRS subscore construction based on hierarchical clustering. The confusion matrix

(left) shows frequency of co-occurrence of individual ASRS items in the same branch of an agglomeratively
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clustered dendrogram (right) using a bootstrapped distribution. The names assigned to the three clusters of the
dendrogram are based on their resemblance to ASRS-3.5 subscores and reflect our hypotheses asto what these
clusters are assessing.

D: Regression plot showing the relationship between prosodic and phonetic subscores derived from the ASRS-3.5
grouping. Scores normalized and inverted so that a score of O indicates severe impairment while a score of 1
indicates little to no impairment. A small jitter (0.01) was introduced to point locations to better visualize individua
subjectsin categorical data. Single subjects (points) above the regression line have more relative impairment in
phonetic function while subjects below the regression line have more relative impairment in prosodic function.
Thereis arelationship between prosodic and phonetic subscores (normalized here to account for different maximum
raw scores,; Pearson r = 0.523; p < .001). Thisis not unexpected, as severe impairment in one domain progresses
towards mutism, which impairs performance on al ASRS items to an extent.

E. Regression plot similar to D showing the relationship between clusters 1 & 2 from the unsupervised method.

F. Regression plot showing a strong correlation between phonetic subscore and cluster 1.

G. Regression plot showing a perfect correlation between prosodic subscore and cluster 2.

Kurteff et a. 11
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170 Image Acquisition

171 Structural MRI for participants in the POLAR database were acquired on a Siemens 3T
172  PrismaFit scanner using a 20-channel head coil at the McCausland Center for Brain Imaging at
173 the University of South Carolina. T1 and T2 images were acquired with avoxel size of 1 mm®.
174 Lesions were manually demarcated on the T2 images by a licensed neurologist. T1 images and
175 lesion masks were nonlinearly warped to the mni152 reference space to facilitate generalization
176  across subjects viain-house scripts and SPM 12. The final warped lesions and corresponding
177 images used in lesion-symptom mapping had an array shape of 207 x 256 x 215 and a voxel size
178  of 0.737 mm°,

179 Lesion-symptom mapping critical networks for phonetic and prosodic ability

180 Brain-behavior relationships were evaluated using a novel |esion-symptom mapping
181 technique from our group called critical network lesion-symptom mapping (CNLSM, Walker et
182 4., inprep.). Conventional voxel-based lesion symptom mapping approaches (erroneously)
183 assume independence between all voxels of the brain asthey are statistically a series of mass
184 univariate comparisons (Mah et al., 2014). Multivariate approaches (e.g., support vector

185 regression) do not make such an assumption but carry their own caveats concerning

186 interpretability and causality (Sperber, 2020). The method we employ aims to identify critical
187 networks supporting performance on a behavioral assessment using a prediction-based

188 framework in an attempt to mitigate these issues with common lesion-symptom mapping

189 approaches. Lesion data arefirst parcellated into regions based on a functional or anatomical
190 atlas. From the atlas, regions that are good candidates for supporting the behavior of interest (in
191 our case, prosodic and/or phonetic ASRS subscore performance) are identified viaap value

192 threshold, calculated viaresampling methods. This p valueis calculated as.

Kurteff et a. 12
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or, for abrain region j, the proportion of times over n (2000) iterations of permuted data that the
B1 coefficient (in-ROI lesion volume) in an ordinary least squares regression of in-ROI and out-
of-ROI (B.) lesion volumeis greater than the observed B, in the non-permuted data. We chose a
more lenient p < 0.1 threshold for candidate regions to reduce the likelihood of false negatives;
goodness of fit was further evaluated using techniques described below that ideally would
eliminate potential false positives from use of amore lenient p value in thisfirst step.

After identification of candidate regions, combinations of these regions are tested for
prediction accuracy using leave-one-out cross-validation (LOOCV) on asimple multivariate
linear model:

= 5o+ Jrer + Bawo

This multivariate model isidentical to the one used to calculate individual brain region
significance, except now 1 is the lesion volume within the candidate network (cf. within an
individual region), and 3, is the lesion volume outside the candidate network (cf. outside an
individual region). Mean absolute error (MAE) between predicted and actual behavioral scores

was selected as the error metric and calculated as:

1 e
MAL = = Yi — Ui
, > lvi—i

i—1

MAE for every combination of candidate regions (e.g., for 10 candidate regions, 2*° — 1
combinations were tested) was compared to MAE for a smple bivariate model with total lesion
volume as the only predictor using a related samples t-test. The prose interpretation of this t-test

is an evaluation of whether treating a set of brain regions as a distinct network within the

Kurteff et al. 13
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214 lesioned areaincreases the ability of the model to predict ASRS subscores. All non-zero

215 combinations of candidate regions were tested and any combination of candidate regions that
216 yielded p < 0.05 on thet-test was treated as a candidate network for supporting the function. The
217 putative “best” combination of candidate regions would be the one that minimizes MAE; that
218 network isreferred to asthe “critical network.”

219 While asingle network of brain regions best modeling the ASRS subscore of interest is
220 identified, a subset of networks that significantly outperform the bivariate lesion volume control
221 modd while not significantly under-performing the critical network are included in analysis as
222 the“ensemble network.” A metric of ensemble prediction across all networksin the ensemble
223 was calculated by averaging error (i.e., equivalent to averaging the predictions and then

224  caculating the error) so that the gains in predictive power over an ensemble of “good enough”
225 networks of regions could be reported alongside the singular critical network. We report the
226 critical network for each ASRS subscore modeled in our results, but we also opt to report co-
227 occurrence of individual regions within ensemble networks and inclusion rate of individual
228 regions within the ensemble networks to emphasi ze that lesion-to-symptom mappings are not
229 monoalithic. Whileit is often combinations of anatomically distributed regions in tandem that
230 critically give support to a behavioral function, given the combinatoric complexity of the

231 possible underlying networks, there are typically multiple combinations of regions that can
232 plausibly link a set of lesion data and a set of behavioral data. Statistics derived from the

233 ensemble network allow us to consider each region’simportance across this “multiverse” of
234 possible explanations for our data. Individual atlas regionsthat have a high rate of prevalence
235 within the ensemble networks and/or strong co-occurrence with other candidate regionsin the

236 ensemble, even if these regions are potentially absent from the singular critical network, are
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likely still of importance in supporting the behavioral ability. Variability in lesion-behavior
mapping results across studies is quite high (Teghipco et al., 2024), which was a primary
motivation for utilizing a more descriptive method of lesion-symptom mapping in CN-LSM,
which identifies a set of plausible networks underlying a function in addition to the classic

definitive set of regions asis presented in conventional lesion-symptom mapping methods.
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Goal: Predict ASRS subscores (y) using lesion volume

A Step 1: Calculate p for each ROl in atlas via permutation test ROI| p |Candidate?
1a. Bivariate linear regression 1b. Calculate p a (0.01
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a+ + _ s iml e
242 ¢ the univariate model minimizes error
243 Figure 2. Schematic of critical network lesion-symptom mapping.

244  Figure reprinted with permission from Walker et al., in prep.

245 Thegoal of CNLSM isto predict behavioral scores from lesion data. The core assumption of the method is that
246  some regions are more useful than othersin predicting behavioral scores.

247  A: Each atlasregion is evaluated through a permutation test which selects a set of candidate regions that meet a
248  specified p-value threshold.

249 B: Candidate networks are formed from all possible combinations of candidate regions. Prediction accuracy for each
250 candidate network is evaluated via leave-one-out cross-validation. For each network, a bivariate model is fit where
251 behavioral scores are modeled using in-network lesion volume (first coefficient) and out-of-network lesion volume
252  (second coefficient).

253  C: The mean absolute error of each candidate network is tested for significance against the MAE of a univariate
254  model predicting behavioral scores using overall lesion volume.

255  D: Theerrors from each network that outperforms the univariate model are averaged together to form an ensemble
256  model from which individual region co-occurrence and rate of prevalence within the ensemble networks can be
257  calculated.
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258 E: Thesingle network that minimizes error relative to the univariate and ensemble prediction errors is declared the
259  critical network.
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260 Because CN-LSM isfundamentally an atlas-based method, and because different atlases
261 canyidd different findings based on their particular regional partitions, we chose to modd the
262 prosodic and phonetic ASRS subscores using two atlases and then compare results across the
263 modds. Thefirst atlas we used was HCPex, an extension of the Human Connectome Project
264 atlaswith extended coverage of subcortical areas. HCPex is amultimodal parcellation of cortical
265 and subcortical regions, defined through structural imaging (T1/T2 weighted thickness/myelin
266 maps), resting state fMRI connectivity, task-based activation, and topographic organization

267 (Huang et al., 2022). We chose HCPex because of its clear delineation of area 55b, an area of
268 interest for apraxia of speech with anatomical proximity to the dorsal precentral speech area
269 (Changet al., 2020; Glasser et a., 2016; Hickok et al., 2023). Because the HCPex atlas does not
270 contain white matter tractography, and because connectivity between the dPCSA/VPCSA and
271 STG/aSMG (respectively) are likely important components of the prosodic and phonetic

272 networks per prior functional imaging research (Burnset al., 2025; Hickok et al., 2023), we

273 chosethe AALCAT atlas supplied with NiiStat (https://www.nitrc.org/projects/niistat/) as our
274 second atlas. The AALCAT atlasisacombination of the AAL cortical atlas (Collins et al., 1998)

275 and the Catani tractography atlas (Catani & Thiebaut de Schotten, 2008).
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276 Results

277 This study aimed to identify patterns of left hemisphere post-stroke impai rment

278 associated with prosodic and phonetic processing in a cohort of people with aphasia and apraxia
279 of speech in an effort to delineate separate neural systems associated with those functions. We
280 employed structural MRI and a series of low-dimensional regression models to associate specific
281 brain regions with prosodic and phonetic ability. The output of this approach is an ensemble

282 network of brain regions that, when lesioned, predict prosodic and/or phonetic ability. The single
283 optimal (in terms of prediction accuracy) network within the ensemble is deemed the critical
284 network. Scores on the Apraxia of Speech Rating Scale (ASRS) were split into prosodic and

285 phonetic subscores which served as the behavioral variables of interest (Duffy et al., 2023).

286 Consigtent with both the PPAOS literature on prosodic and phonetic subtypes and the theoretical
287 dua motor coordination model, we identified separable neural substrates for phonetic and

288 prosodic ability. The patterns of frequency and co-occurrence within the ensemble networks
289 revealed viacritical network lesion-symptom mapping reflects two separable networks for

290 prosodic and phonetic ability, with the former being more dorsal and the latter being more

291 ventral in distribution.

292 The ensemble of networks supporting prosodic function localized to the frontal

293 operculum, posterior inferior frontal junction (plFJ; anterior to dPCSA, but within the dorsal
294 hierarchy), dorsal somatosensory cortex (Brodmann areas 2, 3a), piriform cortex, and putamen
295 (Table2; Figure 3A). 40% (n = 13162) of the permuted networks of candidate regions predicted
296 prosodic subscores better than the bivariate control model. In addition to the ensemble networks,
297 thesingle optimal network is displayed in Table 2. While a region approximating the dPCSA

298 was present in the ensemble networks, ventral sensorimotor regions also appear to be of
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importance in modeling prosodic ability. By measuring the degree of co-occurrence within
ensemble networks for prosodic subscore, we saw that two regions absent from the critical
network were nonetheless important in predicting prosodic ability: Brodmann area 2 (primary
somatosensory cortex) and the putamen were present in 75% and 76% of ensemble networks
(respectively) and frequently co-occurred with every other region found in the ensemble
networks. Full maps of region frequency and co-occurrence are shown in Figures 3B and 3C,

respectively.

Kurteff et al. 20


https://doi.org/10.64898/2025.12.16.694760
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.64898/2025.12.16.694760; this version posted December 19, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

306
307

308
309
310
311
312

available under aCC-BY-ND 4.0 International license.

A
Prosodic Ensemble Network

(HCP extended atlas)

Frequency (%)
||
0 40 100

z=12

B C Ensemble Network
Ensemble Region Relative Frequency Co-occurrence Rate

100%

Putam
200
Pir I
3b I——
FoP3 I
IFJp I

'|1
o
T
N

Region

PEF I 50%

Region
Green = in optimal network

i
w

FOP4 I

FOP1 I

3a I

IFJa I
8C I
or I

0 20 40 60 80 100
Frequency (%)

0%

Co-occurring Region
Figure 3. Ensemble of networks of cortical and subcortical regions supporting prosodic function.

A: Left: Critical regions displayed on a 3D exploded view of an MNI template brain. Region color corresponds to
relative frequency displayed in panel B. Right: Representative 2D slices and coordinates.

B: Relative freguency of individual regions within the ensemble network. Color map isinherited from panel A.
Region labels in green were members of the single optimal network within the greater ensemble.

C: Matrix showing co-occurrence rate of individual dyads of regions within the ensemble network.
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ASRS Critical Network CN Ensemble VolumeMAE
Subscore ROl Description MAE (p) | MAE (p) (Univariate)
Prosodic 38 Brodmann area 3a,S1 3.713 3.847 4.230

FOP3 | Frontal operculum (0.003) (0.009)

IFJp Posterior inferior frontal junction

Pir Piriform cortex
Phonetic 38 Brodmann area 3a 3.554 3.708 4.339

FEF Frontal eye fields (<0.001) | (<0.001)

OP1 Parietal operculum, S2

OP2-3 | Parietal operculum, vestibular cortex

FOP2 | Frontal operculum

FOP3 | Frontal operculum

IFJp Posterior inferior frontal junction

313 Table 2. Single optimal network summariesfor prosodic and phonetic ASRS subscoresin the HCPex atlas.
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The ensemble of networks supporting phonetic function revealed a high degree of overlap
between Brodmann area 3a (primary somatosensory cortex; in 86% of ensemble networks) and
every other region (Figure 4C). Relatively high ensemble network overlap was aso present in
the frontal/parietal operculaand also areas in granular and middle insula. 17% (n = 5631) of
networks predicted phonetic subscores better than the control model. Despite prosodic and
phonetic function localizing to separate networks of brain regions, we observed a moderate
amount of overlap in the frontal operculum, plFJ, and primary somatosensory cortex. The single

optimal network isdisplayed in Table 2.
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322 Figure 4. Ensemble of networks of cortical and subcortical regions supporting phonetic function.

323  A: Léft: Critical regions displayed on a 3D exploded view of an MNI template brain. Region color corresponds to
324 relative frequency displayed in panel B. Right: Representative 2D slices and coordinates.

325 B: Relative frequency of individual regions within the ensemble network. Color map is inherited from panel A.
326  Region labelsin green were members of the single optimal network within the greater ensemble.

327  C: Matrix showing co-occurrence rate of individual dyads of regions within the ensemble network.
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328 Another set of networks were identified using the AALCAT atlas (Catani & Thiebaut de
329 Schotten, 2008; Collins et al., 1998), which contains both cortical and white matter regions of
330 interest, to better describe the medial regions of interest identified using the HCPex atlas (Table
331 3; Figure5). Ensemble network results in the AALCAT atlas reflect the expected connectivity of
332 prosodic (auditory cortex, laryngeal motor control) and phonetic (supramarginal gyrus, Spt)

333 ahility (Figure 5A). For prosodic subscore, the ensemble network consisted of 61.7% (n = 2529)
334 of permuted networks and the ensemble network for phonetic subscore consisted of 38.9% (n =
335 397) of permuted networks. For prosodic function, the corticospinal tract (68% of ensemble

336 networks) frequently co-occurred with almost all other candidate regions (Figure 5C). Insular
337 white matter tracts were also relatively common in the prosodic ensemble networks (62% of

338 ensemble networks) and disproportionately co-occurred with precentral tracts compared to other
339 candidate regions. Overall, prosodic subscore localized to alarge network connecting the

340 frontal/central opercula, postcentral gyrus, insula, cerebellum, and temporal lobe. The patterns of
341 co-occurrence and frequency in the prosodic ensemble network suggests that prosodic function is
342 supported by connections spanning between dorsal regions in somatosensory and motor cortex
343 and auditory regions supporting auditory feedback control, but also connections between dorsal
344  sensory/motor cortex and the cerebellum/corticospinal tract supporting primary efferent control

345 of thelarynx.
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346 Figure 5. Ensemble of networksin an atlas containing white matter tracts supporting prosodic function.

347  A: Left: Critical tracts displayed on a3D exploded view of an MNI template brain. Region color corresponds to
348  relative frequency displayed in panel B. Right: Representative 2D slices and coordinates.

349 B: Reative frequency of individual tracts within the ensemble network. Color map is inherited from panel A. Tracts
350 in green were members of the single optimal network within the greater ensemble.

351 C: Matrix showing co-occurrence rate of individual dyads of tracts within the ensemble network.
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ASRS
Subscore
Prosodic

Critical Network

Frontal Inf Oper

Frontal Inf Orb

Rolandic Oper

Insula

Postcentral

Anterior Segment

Cortico Ponto Cerebellum
Cortico Spinal

Long Segment

Uncinate

CN MAE (p)

3.778 (0.005)

Ensemble
MAE (p)
3.845 (0.005)

Volume M AE
(Univariate)
4.230

Phonetic

Anterior Segment
Long Segment

3.547 (<0.001)

3.707 (<0.001)

4.339

352 Table 3. Single optimal network summaries for prosodic and phonetic ASRS subscores in the HCPex atlas.
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Phonetic subscore, on the other hand, localized to a smaller network consisting primarily
of the arcuate fasciculus, which runs between ventral sensorimotor cortex (vPCSA) and area Spt
(Figure 6). Co-occurrence with other regions was also strongest for the arcuate fasciculus (87%
of ensemble networks), which isin line with the regions identified in the single optimal network
(Table 3) and emphasizes the importance of connectivity between ventral motor control regions
and auditory-to-motor transformation regions in the inferior parietal lobe and temporoparietal
junction. While we did not see a smaller, more focal network supporting prosody as observed in
neurodegenerative work (Josephs et al., 2013; Utianski et al., 2018), the critical networks
identified for phonetic and prosodic subscores appear to support the theory that phonetic ability
in VPCSA is functionally connected to the anterior supramarginal gyrus while prosodic ability in

dPCSA is connected to auditory cortex (Burns et al., 2025; Hickok et al., 2023).
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364 Figure 6. Ensemble of networks in an atlas containing white matter tracts supporting phonetic function.
365  A: Léft: Critical tracts displayed on a 3D exploded view of an MNI template brain. Region color corresponds to
366 relative frequency displayed in panel B. Right: Representative 2D slices and coordinates.
367 B: Reative frequency of individual tracts within the ensemble network. Color map is inherited from panel A. Tracts
368  ingreen were members of the single optimal network within the greater ensemble.
369 C: Matrix showing co-occurrence rate of individual dyads of tracts within the ensemble network.
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370 Discussion

371 This study demonstrates that the prosodic and phonetic components of apraxia of speech,
372 asquantified by subscores on the Apraxia of Speech Rating Scale, localize to separate neural
373 pathwaysin alarge cohort of |eft-hemisphere stroke survivors with aphasia and/or apraxia of
374  speech. We utilized a probabilistic lesion-symptom mapping technique that aimed to identify the
375 relativelikelihood that individual brain regions are important in modeling prosodic and/or

376 phonetic function. This technique generated an ensemble of brain networks that, when treated as
377 functionally distinct from overall lesion volume, plausibly improved the ability to predict

378 behavioral scoresfrom lesion data. Our use (and prior development) of a prediction-based,

379 ensemble approach to lesion-symptom mapping was motivated by the inherent noise of lesion
380 studies. While conventional lesion-symptom mapping techniques identify a single solution for
381 mapping brain to behavior, the prediction-based nature of our mapping technique yields insights
382 into other mapsthat still plausibly model the brain-behavior relationship despite not being a

383 single most-optimal mapping of brain-to-behavior.

384 The ensemble of brain regions that best predicted the prosodic subscore of the ASRS

385 consisted of central sensory and motor areas, subcortical motor nuclei, the cerebellum and

386 cortico-cerebellar pathways, and white matter connections between primary sensorimotor cortex
387 and auditory cortex/insula. The ensemble of brain regions that best predicted the phonetic

388 subscore of the ASRS consisted of partially overlapping central sensory and motor areas

389 aongside the dorsal aspect of the arcuate fasciculus connecting ventral sensorimotor and inferior
390 parietal cortex. These results support the interpretation that prosodic and phonetic deficitsin

391 speech output have distinct neural foundations and implies that considering prosodic/phonetic
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impairments as discrete treatment goals during rehabilitation may improve patient outcomesin
motor coordination disorders such as apraxia of speech.

While we initially hypothesized that prosodic ability would localize to the lateral cortical
surface in the dorsal precentral speech area (dPCSA) and phonetic ability would localizeto a
more distributed frontoparietal network including the ventral PCSA, the networks identified by
our approach paint a more complex picture. Rather than mapping to discrete lateral cortical
areas, prosodic and phonetic ability as determined by ASRS subscores mapped instead onto an
overlapping mixture of cortical and subcortical areas in the HCPex atlas. Phonetic subscore
localization partially overlapped with prosodic subscore in the frontal operculum, primary
sensory cortex, and posterior |IFG. While we interpret these networks as partially overlapping yet
still distinct, in the context of our results both prosodic and phonetic function could be described
as dorsal and ventral. We identified amyriad of regions outside of the precentral gyrus that
played an important role in modeling prosodic and phonetic function. Brodmann area 2, part of
primary somatosensory cortex, was present in the ensemble networks for prosodic and phonetic
function. For prosody, BA2 likely plays arole in proprioceptive monitoring of pitch, a necessary
component of feedback control during speech (Houde & Nagaragjan, 2011), whileitsrolein
phonetic function is likely related to somatosensory feedback during articulation. Future
experimental work using high-temporal-resolution electrophysiological recordings could confirm
a post-articulatory role for BA2 in prosodic and phonetic function. The putamen and piriform
cortex also emerged as important regions supporting prosodic function. The putamenisa
subcortical motor control nucleus involved in pitch regulation during singing (Zarate & Zatorre,
2008), while piriform cortex isless directly related to prosodic function in the literature. It is

possible the involvement of piriform cortex is due to its medial proximity to auditory regionsin
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the insula and planum temporale, meaning the inclusion of piriform cortex in the optimal
network for prosody may be reflective of connectivity to auditory regions supporting prosodic
function. Lastly, insular regions were present in both prosodic and phonetic ensemble networks,
but absent from the optimal networks for both ASRS subscores. The superior precentral gyrus of
theinsulain particular has been linked to apraxia of speech, specifically in an articulatory role, in
prior literature, which supports the insular mapping of phonetic function in the current study
((Baldo et al., 2011; Dronkers, 1996); but see also disagreement in (Fedorenko et al., 2015)).
There is no direct link between prosody and the insulain the literature, but limited studies have
shown arole for theinsulain auditory processing during speech production (Kurteff et al., 2024;
Woolnough et al., 2019). Theinsulais a multifunctional brain region that playsarolein
numerous sensory, motor, and cognitive processes (Kurth et al., 2010) and the vast majority of
middle cerebral artery strokes implicate theinsulain some form (Hillis et al., 2004) which makes
further interpretation of these results (an atlas-based lesion study) particularly difficult. In
general, differences between underlying patterns of impairment in stroke and in
neurodegeneration may explain differences between the current study and prior work donein
progressive aphasias and AOS.

The white matter tractsin our mapping of the AALCAT atlas more clearly separated
prosodic and phonetic processing into distinct pathways. We interpret the white matter pathways
supporting prosodic function as reflecting connectivity of primary sensorimotor cortex to
auditory regions (as proposed by Hickok et al., 2023) as well as subcortical and cerebellar motor
control regions. A large white matter network supporting prosody may reflect the increased
demands on sensory systems supporting prosody compared to articulation, as vocal feedback

monitoring is an important component of prosodic control. The involvement of more long-
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438 digtance fibers such as the corticopontocerebellar and corticospinal tracts supports this

439 hypothesis. The corticospinal tract involvement also likely reflects the role primary efferent

440 control of the larynx plays in prosodic control and the anatomical proximity of dorsal laryngeal
441 motor cortex (Dichter et al., 2018) and the dPCSA. The most important white matter pathways
442  for modeling phonetic function were the anterior and long segments of the arcuate fasciculus,
443  which connectsthe inferior frontal gyrus and ventral precentral gyrus to auditory-motor regions
444  inthe Sylvian-parietal-temporal (Spt) junction. This reinforces the connections proposed in the
445 Hickok et al., 2023 dual motor coordination: an auditory-to-precentral pathway supports

446 prosodic function and a parietal-to-precentral pathway supports phonetic function.

447 There are several plausible explanations for why the results of the current study are not a
448 clear-cut validation of the dPCSA/VPCSA dichotomy put forth in Hickok et al., 2023. Firstly, we
449  observed some collinearity in our prosodic and phonetic subscores (Figure 1D, r = 0.52). This
450 does not imply that prosodic and phonetic function cannot be separated using a scale such as the
451 ASRS, but rather highlights that at a certain degree of severity, patients with expressive speech
452  deficitswill score poorly on both prosodic and phonetic subcomponents of the ASRS. For mild-
453 to-moderate cases, there are individual subjects who clearly are selectively impaired in asingle
454  domain, suggesting that prosodic and phonetic ability are separable usingthe ASRS. It is

455 possible that the partial overlap we identified in networks supporting prosodic and phonetic
456 function isrelated to this collinearity in more severe cases but we lack sufficient power to do a
457 follow-up analysisin subsets of our cohort. Therefore, it is difficult to conclude in the present
458 study whether the partial overlap in prosodic and phonetic networks is due to shared neural

459 substrates or an artifact of more severe cases in the cohort. Smilarly, we could not construct

460 ensemble network statistics for the subset of our cohort that had a diagnosis of AOS (n = 61) for
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461 power reasons. Our results could also highlight a fundamental limitation of lesion-symptom

462 mapping studiesin that these are noisy data, especially in comparison to our benchmark of

463 Hickok et al., 2023, which is aliterature review. We anticipate future studies of prosodic and
464  phonetic function will provide converging evidence that support the separation of these processes
465  into separate anatomical hubs within precentral cortex and their corresponding underlying

466 pathways.

467 In terms of translating these results to the clinic, more work is of course needed.

468 However, we advocate that clinicians assessing and treating post-stroke AOS pay attention to
469 whether patients make errors that fall primarily into a prosodic or phonetic pathology, as the
470 results presented in this study support at least a partial neurobiological separation of these

471 faculties. Future studies should aim to better categorize prosodic and phonetic deficits in post-
472  stroke AOS, but behavioral guidelines from the PPAOS literature offer a good starting point
473 (Utianski et al., 2018): prosodic post-stroke AOS is likely marked by difficulty with syllable
474  segmentation and reduction of words per breath group, while phonetic post-stroke AOS is likely

475 marked by speech sound substitutions and distortions.

476 Concluson

477 This study provides motivation for conceptualizing post-stroke apraxia of speech astwo
478 separate profiles of impairment with different neural foundationsin a fashion that parallels such
479 asplitinthe primary progressive AOS literature. Prosodic AOS is neurobiologically marked by
480 impairment in a precentral-to-auditory motor coordination stream while phonetic AOS is

481 marked by impairment in a precentral-to-parietal motor coordination stream. The existence of

482 separable neural pathways for these aspects of speech production in a cohort of stroke survivors
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with aphasia and/or AOS supports the theoretical separation of motor coordination into two

hierarchies governing laryngeal (or prosodic) and supralaryngeal (or phonetic) coordination.
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