
Copyright

by

G. Lynn Kurte↵

2024

1



The Dissertation Committee for G. Lynn Kurte↵
certifies that this is the approved version of the following dissertation:

Cortical Suppression of Auditory Feedback during

Speech Production and Perception

Committee:

Liberty S. Hamilton, Supervisor

Maya L. Henry

Rosemary A. Lester-Smith

Jun Wang

Stephanie Ries

2



Cortical Suppression of Auditory Feedback during

Speech Production and Perception

by

G. Lynn Kurte↵

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2024

3



This dissertation is dedicated to Ann “Granny Annie” Kurte↵, for always

putting forth her best e↵ort to understand my research. I hope being the

first “Dr. Kurte↵” makes her proud.

4



Acknowledgments

Writing a dissertation is not something one can accomplish alone, even

if many aspects of the process are incredibly solitary. I would like first to thank

Dr. Liberty S. Hamilton, my PhD advisor, academic mentor, and friend for

teaching me the majority of what I know about the brain at this point. I also

would like to thank Dr. Maansi S. Desai for embarking on this crazy journey

with me in 2018. The rest of the Hamilton Lab at UT Austin provided me with

much-needed support as well. I would also like to thank Dr. Joseph J. Campos,

one of my undergraduate mentors, for emphasizing to me the importance of

theoretical motivation in a methods-obsessed translational research field; his

voice has been echoing in my head for the better part of a decade at this

point. I would also like to thank Dr. Neal P. Fox for his mentorship in the

early years of my PhD, particularly for his advice to get a dog in grad school,

which proved invaluable. It would be remiss of me to not thank my fiancée,

Dr. Aubrey T. Rieder, for her unwavering patience and copyediting skills.

Lastly and most importantly, I would like to thank the epilepsy commu-

nity for trusting researchers like myself with their neural data; without them,

none of this would have been possible.

5



Cortical Suppression of Auditory Feedback during

Speech Production and Perception

Publication No.

G. Lynn Kurte↵, Ph.D.

The University of Texas at Austin, 2024

Supervisor: Liberty S. Hamilton

Speaker-induced suppression (SIS) is a phenomenon where responses to

one’s own speech are reduced in amplitude compared to the speech of others.

It is unknown how this process modulates other phenomena of the auditory

system studied in purely perceptual experiments. For example, “onset” re-

sponses to the acoustic onset of a speech stimulus are observed in auditory

cortex during listening tasks. Onset responses and the N1 EEG component

share a high-amplitude and low-latency profile. SIS suppresses the N1, but it

is unknown whether SIS modulates onset responses. This dissertation presents

two original studies describing how the brain responds to speech stimuli dif-

ferently during speaking and listening.

In Chapter 2, I recorded scalp EEG while participants read sentences

aloud then passively listened to playback, which generated identical acoustics

between speaking and listening conditions. A more naturalistic sentence-level
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task allowed investigation of phonological feature tuning via temporal receptive

field analysis. The results show that during SIS, phonological feature tuning

remains relatively stable between perception and production, demonstrating

that suppressive feedback control mechanisms during speech production do

not a↵ect the more abstract linguistic representations of the auditory system

they suppress.

Chapter 2 investigated the interaction of SIS with higher-order linguis-

tic processing in naturalistic speech but could not assess specific brain struc-

tures’ roles in processing auditory feedback due to EEG’s poor signal-to-noise

ratio. In Chapter 3, I recruited participants undergoing epilepsy monitor-

ing procedures that involve surgical implantation of intracranial electrodes,

a higher-spatial-resolution recording technique. Participants completed the

same task described in Chapter 2, and unsupervised clustering of responses to

speaking and listening revealed anatomical trends in the neural data. “Onset

suppression” electrodes in bilateral auditory cortex showed onset responses at

the start of a sentence during speech perception but not during speech pro-

duction. Other cortical areas were generally selective to either speaking or

listening but did not specifically suppress onset responses. However, “dual on-

set” electrodes in posterior insula exhibited onset responses to both speaking

and listening with a similar latency to “onset suppression” electrodes. Similar

to Chapter 2, “onset suppression” and “dual onset” regions showed phono-

logical feature tuning that did not di↵er during perception and production,

but due to the higher signal-to-noise ratio of the dataset, individual electrodes
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showed stronger tunings to specific classes of phonological features than what

was observed via EEG.

The research presented in this dissertation expands on previous studies

of SIS by clarifying which aspects of the neural response are suppressed during

speech production. The absence of onset responses during speech production

suggests they play a role in auditory stimulus orientation, an unnecessary pro-

cess during speaking due to predictive feedforward control. The insula, which

exhibits onset responses during speaking and listening, likely plays a role in

the feedback control of speech by integrating feedback from somatosensory and

auditory modalities as a part of the feedback monitoring process. Expanding

our understanding of how feedback control mechanisms function in the brain

can hopefully lead to better assessment and treatment of disorders of speech

motor control such as stuttering and apraxia of speech.
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2.4 Including EMG as an encoded feature in linear models
greatly improves their performance, as well as the sta-
bility of phonological feature encoding between percep-
tion and production. (A) Individual electrodes’ correlation
coe�cients with held-out neural response within models that
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3.1 Schematic of time windows for bootstrap t-tests. (A)
Schematic for bootstrapping during the speaking and listening
task. Colors of X-axis values indicate time (in seconds) relative
to the click sound (pink), production trial (purple), or percep-
tion trial (green). Rows represent information seen, heard, and
spoken by the participant over the course of a trial. Shaded gray
areas indicate time windows of high gamma activity compared
during the bootstrap procedure. The perception trial waveform
is split into two colors to indicate that the same windows of
activity are used to calculate bootstrap significance for the con-
sistent/inconsistent playback manipulation. (B) Schematic for
bootstrapping during the speech motor control task. Di↵er-
ent time windows are used for the bootstrap procedure due to
the lack of inter-trial click sounds in the speech motor control
task. The speech motor window is calculated relative to the
click sound to capture any potential preparatory motor activity
before the go signal (green circle). . . . . . . . . . . . . . . . 124

3.2 Auditory onset responses are suppressed during speech
production. (A) Schematic of reading and listening task. Par-
ticipants read a sentence aloud (purple) then passively listened
to playback of themselves reading the sentence (green). Pink
spikes in the beginning and middle of the audio waveform in-
dicate inter-trial click tones, used as a cue and an auditory
control. (B) Single-electrode plots showing di↵erent profiles of
response selectivity across the cortex. Color gradient repre-
sents normalized SI values. A more positive SI indicates an
electrode is more responsive to speech perception stimuli (e1)
while a more negative SI means an electrode is more responsive
to production stimuli (e3). e2 and e3 are examples of response
profiles described in subsequent figures (Figures 3.3 and 3.4,
respectively). Example electrodes’ SI are indicated on the gra-
dient. Subplot titles reflect the participant ID and electrode
name from the clinical montage. (C) Whole-brain and single-
electrode visualizations of perception and production selectiv-
ity (SI). Electrodes are plotted on a template brain with an
inflated cortical surface; dark gray indicates sulci while light
gray indicates gyri. Single-electrode plots of high-gamma ac-
tivity demonstrate suppression of onset response relative to the
acoustic onset of the sentence (vertical black line). (D) Box
plot of suppression index during onset (blue) and sustained (or-
ange) time windows separated by anatomical region of interest
in primary and non-primary auditory cortex. Brackets indicate
significance (* = p < 0.05; ** = p < 0.01). Abbreviations: HG:
Heschl’s gyrus; PT: planum temporale; STG: superior temporal
gyrus; STS: superior temporal sulcus; MTG: middle temporal
gyrus; CS: central sulcus; Post. Ins.: posterior insula. . . . . 136
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3.3 A functional region of interest in posterior insula shows
onset responses to both speaking and listening. (A)
Whole-brain and visualization of dual onset electrodes. Elec-
trodes are plotted on a template brain with an inflated corti-
cal surface; dark gray indicates sulci while light gray indicates
gyri. Black outline on template brain highlights functional re-
gion of interest in posterior insula with anatomical structures
labeled. Electrode color indicates the di↵erence in Z-scored
high gamma peaks during the speaking and listening conditions
(�Z). Right hemisphere is cropped to emphasize insula ROI,
while left hemisphere is shown in entirety due to lower num-
ber of electrodes. (B) Whole-brain visualization of electrodes
with onset responses only during speech perception. Electrode
color indicates the peak high gamma amplitude during the onset
response. (C) Whole-brain visualization of electrodes with on-
set responses only during speech production. Electrode color
indicates the peak high gamma amplitude during the onset
response. (D) Single electrode activity from posterior insular
electrodes highlighting dual onset responses during speech pro-
duction and perception. Vertical black line indicates acoustic
onset of sentence. Subplot titles reflect the participant ID, elec-
trode name from the clinical montage, and anatomical ROI.
(E) Grayscale heatmaps of single-trial electrode activity dur-
ing a nonspeech motor control task, separated by no vocaliza-
tion (e.g., “stick your tongue out”) and vocalization (e.g., “say
‘aaaa’ ”). For vocalization trials, onset of acoustic activity is
visualized relative to the click accompanying the presentation
of instructions (pink) and the onset of vocalization (red). (F)
Strip plot showing the distribution of channel-by-channel on-
set response peak amplitudes separated by anatomical region
of interest and whether onset responses occur only during per-
ception (left), only during production (center), or occur during
perception and production (right). Electrodes are colored ac-
cording to the colormaps of (A), (B), and (C). (G) Schematic
of quantification of onset response for an example electrode (e2,
DC5 PSF-PI3). The first contiguous peak of activity > 1.5 SD
above the mean response constitutes the onset response and is
shaded in orange. Peak amplitude values displayed in (B), (C)
and (G) are indicated. Caption continued on next page. . . . 139

20



3.3 (H) Bar plot showing the estimated marginal mean (EMM ) la-
tency of the onset response in three regions of interest: auditory
primary (HG + PT), auditory non-primary (STG + STS), and
posterior + inferior insular. Insular onset latency is comparable
to primary auditory latency. Brackets indicate significance (*
= p < 0.05; ** = p < 0.01). Abbreviations: HG: Heschl’s gyrus;
STG: superior temporal gyrus; STS: superior temporal sulcus;
MTG: middle temporal gyrus; Inf/Sup/Ant/Post/ CrS: infe-
rior/superior/anterior/posterior circular sulcus of the insula;
LGI: long gyrus of the insula; SGI: short gyrus of the insula;
PT: planum temporale. . . . . . . . . . . . . . . . . . . . . . 140

3.4 Anatomically distinct onset suppression and dual on-
set clusters represent a subclass of response profiles to
continuous speech production and perception. (A) Per-
cent variance explained by cNMF as a function of total number
of clusters in factorization. Threshold of k = 9 factorization
plotted as vertical black line. (B) cNMF identifies three re-
sponse profiles of interest: (c1) onset suppression electrodes,
characterized by a suppression of onset responses during speech
production and localized to STG/HG; (c2) dual onset elec-
trodes, characterized by the presence of onset responses dur-
ing perception and production and localized to posterior insula;
(c3) pre-articulatory motor electrodes, characterized by activ-
ity prior to acoustic onset of stimulus during speech production
and localized to ventral sensorimotor cortex. Left: Cluster basis
functions for speaking sentences (purple), listening to sentences
(green), and inter-trial click (pink) for c1, c2, and c3. Center,
right: Two example electrodes from the top 16 weighted elec-
trodes. Subplot titles reflect the participant ID and electrode
name from the clinical montage. (C) Cropped template brain
showing top 50 weighted electrodes for individual clusters (c1,
c2, c3). A darker red electrode indicates higher within-cluster
weight. (D) Individual electrode contribution to dual onset and
onset suppression cNMF clusters in both hemispheres. Top 50
weighted electrodes for each cluster are plotted on a template
brain with an inflated cortical surface; dark gray indicates sulci
while light gray indicates gyri. Red electrodes contribute more
weight to the “onset suppression” cluster while blue electrodes
contribute more to the “dual onset” cluster; purple electrodes
contribute equally to both clusters while white electrodes con-
tribute to neither. (E) Percent similarity of onset suppression
(c1) and dual onset (c2) clusters’ top 50 electrodes. The ma-
jority of the electrode weighting across these two clusters is
non-overlapping. Abbreviations: STG: superior temporal gyrus;
CS: central sulcus. Inf. Ins. = inferior insula, Post. Ins =
posterior insula. . . . . . . . . . . . . . . . . . . . . . . . . . 146
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3.5 Playback consistency manipulation yields separate, weaker
e↵ects than onset suppression. (A) Task schematic show-
ing playback consistency manipulation. Participants read a sen-
tence aloud (purple) then passively listened to playback of that
sentence (blue) or randomly selected playback of a previous trial
(orange). (B) Whole-brain visualization of responsiveness to
playback consistency. Electrodes are plotted on an inflated tem-
plate brain; dark gray indicates sulci while light gray indicates
gyri. Electrodes are colored using a 2D colormap that repre-
sents high gamma amplitude during consistent and inconsistent
playback; blue indicates a response during consistent playback
but not during inconsistent, orange indicates a response dur-
ing inconsistent playback but not during consistent playback,
pink indicates a response to both playback conditions, white
indicates a response to neither. Most electrodes are pink, indi-
cating strong responses to both conditions. Example electrodes
from (D) are indicated. Caption continued on next page. . . . 149

3.5 (C) Scatter plot of channel-by-channel peak high-gamma activ-
ity during consistent playback (Y-axis) and inconsistent play-
back (X-axis). Vertical black line indicates unity. Color cor-
responds to gross anatomical region. Example electrodes from
(D) are indicated. (D) Single-electrode plots of high-gamma
activity relative to sentence onset (vertical black line). Left
column (e1 and e2): Electrodes in temporal cortex demonstrat-
ing a slight preference for inconsistent playback. Right column
(e3 and e4): Electrodes in frontal cortex demonstrating a slight
preference for consistent playback and a larger preference for
speech production trials. Abbreviations: HG: Heschl’s gyrus;
STG: superior temporal gyrus; PreCS: precentral sulcus; Supra-
mar: supramarginal gyrus. . . . . . . . . . . . . . . . . . . . 149

22



3.6 Phonological feature tuning is stable during speaking
and listening across brain regions. (A) Regression schematic.
Fourteen phonological features corresponding to place of articu-
lation, manner of articulation, and presence of voicing alongside
four features encoding task-specific information (i.e., whether
a phoneme took place during a speaking or listening trial, the
playback condition during the phoneme) were binarized sample-
by-sample to form a stimulus matrix for use in temporal recep-
tive field modeling. (B) Model performance as measured by
the linear correlation coe�cient (r) between the model’s pre-
diction of the held-out sEEG and the actual response plotted
at an individual electrode level on an inflated template brain;
dark gray indicates sulci while light gray indicates gyri. Ex-
ample electrodes from (D) and (E) are indicated. (C) Model
performance by region of interest. Color corresponds to gross
anatomical region. (D) Temporal receptive fields of two exam-
ple electrodes in temporal and insular cortex. (E) Temporal
receptive fields of an example electrode for the four models pre-
sented in (F). (F) Scatter plot of channel-by-channel linear cor-
relation coe�cients (r) colored by model comparison. The X-
axis shows performance for the “base” model whose schematic
is presented in (A). The Y-axis for each scatterplot shows per-
formance for a modified version of the base model: task features
encoding production and perception were removed from the
model (yellow); task features encoding consistent and inconsis-
tent playback conditions were removed from the model (cyan);
phonological features were separated into production-specific,
perception-specific, and combined spaces (magenta). Abbrevi-
ations: HG: Heschl’s gyrus; PT: planum temporale; STG/S: su-
perior temporal gyrus/sulcus; MTG/S: middle temporal gyrus/sulcus;
PreCG/S: precentral gyrus/sulcus; CS: central sulcus; SFG/S:
superior frontal gyrus/sulcus; MFG/S: middle frontal gyrus/sulcus;
IFG/S: inferior frontal gyrus/sulcus; OFC: orbitofrontal cor-
tex; SPL: superior parietal lobule; PostCG: postcentral gyrus;
Ant./Post./Sup./Inf. Ins.: anterior/posterior/superior/inferior
insula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
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A.1 Comparison of EEG activity before and after EMG ar-
tifact correction. (A) Stimuli (top) and grand average ERP
of raw data (middle) and CCA-corrected data (bottom) relative
to displayed stimuli. Grand average plots are separated by the
epochs’ anticipated level of contamination with EMG artifact.
Left panels (red, purple) show epochs that are anticipated to
be contaminated because of their association with articulation.
Right shows (green, pink) epochs that are anticipated to con-
tain relatively less EMG artifact because of their association
with passive listening; however, jaw clenching during passive
listening means these data cannot be assumed to be EMG free.
(B) LME model EMMs for the RMS amplitudes of 0–300 msec
raw-CCA di↵erence waves for each of the four epochs of interest.
Shaded area represents standard error. A value closer to zero
indicates less activity was subtracted from the EEG response
during CCA artifact correction. . . . . . . . . . . . . . . . . . 206

B.1 Single-subject visual scene change responses in occipital
cortex. (A) Inflated cortical reconstruction of single-subject
(DC7) right hemisphere with significant electrodes (SI boot-
strap t-test; see §3.4.8) visualized. Light gray represents gyri
while dark gray represents sulci. Electrodes are colored accord-
ing to their SI values. Example electrodes in (B) and (C) are in-
dicated. (B) Single-electrode plots showing visual scene change
responses in middle occipital sulcus during speech production
(purple) and perception (green). Shaded area represents mar-
gin of error. Subplot titles reflect the participant ID and elec-
trode name from the clinical montage. (C) Single-electrode
plots showing responses to speech production (purple), consis-
tent (blue) and inconsistent (orange) playback conditions, and
the inter-trial click (pink). Shaded area represents margin of
error. Subplot titles reflect the participant ID and electrode
name from the clinical montage. The electrodes in this panel
appear to be most responsive during speech production and
the click sound, both of which temporally correlate with vi-
sual scene changes. (D) Expanded task schematic to illustrate
where visual scene changes occur in the task. Rows represent
information seen, heard, and spoken by the participant over the
course of a trial. The time on the X-axis is not to scale due
to trial-to-trial variability in reaction time duration in partici-
pant responses and is instead relative to the di↵erent types of
events visualized at t=0 in (B) and (C). Multiple panels are
provided to emphasize that the timing of events does not fun-
damentally change for consistent versus inconsistent playback.
Visual scene changes are indicated on the timeline with a red
triangle. Abbreviations: MOS: middle occipital sulcus. . . . . 209

24



B.2 Single-subject perceptual responses in inferior frontal
cortex. (A) Inflated cortical reconstruction of single-subject
(DC5) right hemisphere with significant electrodes (SI boot-
strap t-test; see §3.4.8) visualized. Light gray represents gyri
while dark gray represents sulci. Electrodes are colored ac-
cording to their SI values. Example electrodes in (B) and
(C) are indicated. (B) Single-electrode plots showing percep-
tual responses in inferior frontal cortex during speech produc-
tion (purple) and perception (green). Shaded area represents
margin of error. Subplot titles reflect the participant ID and
electrode name from the clinical montage. (C) Single-electrode
plots showing responses to speech production (purple), consis-
tent (blue) and inconsistent (orange) playback conditions, and
the inter-trial click (pink). Shaded area represents margin of
error. Subplot titles reflect the participant ID and electrode
name from the clinical montage. Abbreviations: IFS: inferior
frontal sulcus. . . . . . . . . . . . . . . . . . . . . . . . . . . 211

C.1 9 presented cNMF clusters explain 86% of the variance
in the data (§3.4.7; Figure 3.4A). “Onset Suppression” and
“Dual Onset” clusters presented in Results (Figure 3.4B) here
are labeled as Clusters 2 and 1, respectively. “Pre-articulatory
Motor” cluster presented in Results (Figure 3.4B) here is la-
beled as Cluster 3. The responses plotted are the cluster basis
functions of individual clusters relative to either sentence onset
(production and perception conditions) or the inter-trial click
tone (click condition). . . . . . . . . . . . . . . . . . . . . . . 213

C.2 Individual electrodes for all subjects with available imag-
ing (n=15) plotted on the cvs avg35 inMNI152 atlas brain,
color-coded by anatomical region of interest. Cortical
surface inflated for better visualization of insular electrodes.
Electrode visualization in native subject space is shown in Fig-
ure C.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

C.3 Electrodes visualized on 3D reconstructions of individ-
ual subjects’ MRIs, color-coded by anatomy. Color gra-
dient represents density of electrode coverage. A separate re-
construction of individual subjects’ insulas is provided for vi-
sualization of insular electrodes not visible from lateral cortical
surface. Each subject displayed here is visualized on an aver-
aged brain in Figure C.2. . . . . . . . . . . . . . . . . . . . . 215
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C.4 Phonological feature representation in negative delays
in inferior frontal cortex. (A) Inflated template brain recon-
struction identical to Figure 3.6B but with example electrodes
from (B) indicated instead. Dark gray indicates sulci while
light gray indicates gyri. Color corresponds to linear correla-
tion coe�cient (r) values of mTRF models at a single-electrode
level. (B) Single-electrode temporal receptive fields demonstrat-
ing phonological feature tuning in inferior frontal cortex across
participants. Notably, the strongest weighting for phonologi-
cal features is consistency at negative delays (pre-articulatory).
Phonological feature tuning is strongest in IFG across partici-
pants (e1, 2, 3) and receptive fields in other areas of frontal cor-
tex are better modeled by task-level features (e4), but show the
same temporal selectivity as phonologically tuned electrodes in
IFG. Abbreviations: IFG: inferior frontal gyrus; MFG: middle
frontal gyrus. . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
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Chapter 1

Background

Speech production is a complex cognitive and sensorimotor process

unique to humans (Hauser et al. 2002). It is an intuitive and essential mode

of communication that every human universally develops barring extreme in-

dividual counterexamples. Despite its ubiquity, the theoretical and biological

faculties of speech are not well understood. While it is accepted that the lar-

ynx, tongue, and other vocal organs articulate speech and the auditory system

and hearing organs comprehend speech, the way that the central nervous sys-

tem facilitates speech perception and production is of relatively recent study.

Speech motor control exists at the intersection of speech perception

and production and refers to a broad series of processes that govern the plan-

ning and production of speech “in real time.” While preparing to speak, we

take an abstract communicative intent and prepare it for articulation by our

vocal organs through a series of linguistic transformations into morphologi-

cal, phonological, and syllabic information. While we speak, we monitor the

sensory outcomes of our speech to ensure what we intend to say is actually

said. Most contemporary theoretical models of speech motor control divide

the process into feedforward (or internal, predictive) and feedback (or external,
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corrective) systems. These dichotomous systems work together in real time to

estimate the sensory consequences of speech, monitor ongoing sensory conse-

quences of speech, detect deviances from the estimation, and update motor

programs to correct these deviances. The feedforward control system is con-

cerned with generation and maintenance of the motor program and estimation

of the sensory consequences of speech. The feedback control system’s purpose

is to monitor acoustic and somatosensory feedback from our articulators as

we speak. The detection and correction of speech errors emerges from inter-

action between these systems. This dissertation is primarily concerned with

feedback control mechanisms; specifically, how our brain processes the sensory

consequences of our own speech mechanisms as we speak.

My motivation to expand upon our knowledge of the neural mechanisms

of speech motor control comes in part from the relative paucity of speech pro-

duction research in the cognitive sciences, which is in turn the product of

several extenuating circumstances. Firstly, speech motor control is a process

unique to humans, which limits its study using animal models to the basic

sensory and motor substrates of the process. Second, because in vivo neu-

ral recordings often require a surgical procedure, the direct study of uniquely

human cognitive faculties such as speech motor control has historically been

limited to noninvasive imaging of brain activity or to lesion-based studies, as

clinical necessity serves as the sole motivator for obtaining invasive recordings

of the human brain. Of course, a lack of high-resolution recording techniques

for use in humans is a limitation to research of any cognitive faculties of hu-
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mans. But, an increased access to invasive human neuroimaging for research

studies is beginning to mitigate this limitation (Chang 2015). Third, and

more specific to the study of feedback control during speech production, is

the presence of movement artifacts in recordings of speech production. Nonin-

vasive techniques such as electroencephalography (EEG) and functional mag-

netic resonance imaging (fMRI) can have their recording quality a↵ected by

movement fundamentally associated with articulation of speech. EEG in par-

ticular is well-suited to study speech production barring this caveat, as it is

a direct measure of the synaptic potential of neurons (Ray et al. 2008; Luck

2014) and it is incredibly temporally precise, an important factor considering

changes in articulation occur on a rapid timescale that would be temporally

smeared in lower-temporal-resolution hemodynamic/metabolic recording tech-

niques such as fMRI and positron emission tomography (PET), respectively.

Despite EEG’s utility in studying speech production and its existence as a

recording technology since the 1920s (Luck 2014), researchers have generally

avoided it as a technique for studying speech production due to its tendency

to record extraneous electrical activity from the facial muscles involved in ar-

ticulation as well. Because the scalp muscles are much closer to the electrodes

than the neurons researchers intend to record from, EEG recordings taken

during articulation often feature large movement artifacts that obfuscate the

study of speech production (Vos et al. 2010; Shackman et al. 2009). To cir-

cumvent this limitation, researchers have used “imagined” or “covert” speech

to either minimize or completely negate the range of motion of articulators
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during speech production (Okada et al. 2018; Shuster 2003). Monitoring of

somatosensory and auditory feedback from speech production is an essential

component of speech motor control (Houde & Nagarajan 2011; Tourville &

Guenther 2011), so such covert approaches to speech production research carry

a critical limitation, being that somatosensory and auditory feedback are not

generated in the same capacity when articulation is restricted. Another histor-

ical workaround is the use of single-syllable or single-word stimuli, which aim

to minimize movement artifact by reducing the natural coarticulation present

in continuous speech. Fortunately, in the last several years, promising artifact

correction techniques have yielded the first studies of continuous overt speech

production using scalp EEG that maintain a tolerably high signal-to-noise ra-

tio (Ries et al. 2021; Kurte↵ et al. 2023), opening the door for more noninvasive

studies of speech motor control. One of these studies is included as Chapter 2

of this dissertation.

Intracranial recordings, while not completely free of movement artifact

(Bush et al. 2022), are relatively spared from artifact compared to their non-

invasive counterparts because the electrodes in a surgically implanted device

are much, much closer to the neurons they record from. However, the clin-

ical necessity of surgical implantation of electrodes places fundamental lim-

itations on the accessibility of intracranial EEG data to researchers, so the

study of speech motor control still stands to benefit from wider access to a

noninvasive technique that can record responses during articulation. Fortu-

nately, as surgical procedures involving intracranial recordings become more
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commonplace, this type of data is increasingly made available to researchers

in the cognitive sciences. Chapter 3, the second of two results chapters in this

dissertation, presents original research on feedback control using intracranial

stereo-electroencephalography (sEEG) recordings collected from participants

undergoing treatment of medically refractory epilepsy.

In addition to increased access to intracranial recordings, there is an

ongoing paradigm shift in parallel fields to cognitive science such as machine

learning and linguistics that has motivated my dissertation research. The

creation and curation of language corpora has expanded the size of datasets

available to neurolinguistic researchers. In tandem with advances in recording

technologies and analysis techniques, the contemporary neurolinguist can af-

ford to study processes such as speech production in relatively less constrained

contexts. Historically, psycholinguistic and neurolinguistic research has used

heavily constrained stimuli such as single vowels or syllables to ensure an ad-

equate number of trials to quantify trends in the data. Studying speech and

language instead in ecologically valid contexts (i.e., words, sentences, uncon-

strained conversation) makes the results more generalizable, facilitating the

development of clinical interventions for those for whom the faculties of speech

and language are disordered (Hamilton & Huth 2020; Matusz et al. 2019).

To summarize, the current state of cognitive-linguistic/speech science

research is punctuated by unparalleled access to high fidelity recordings of the

human brain made possible by recent technological advancements in recording

and computing hardware. Scientists can collect more high-quality data and
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can use it to fit more complex statistical models in more naturalistic contexts.

Speech production is one specific area of study that serves to benefit from

these advancements, as its temporal precision and complex interactions be-

tween multiple brain regions have hindered its study with historically available

lower resolution methods. In my dissertation, I will describe two experiments

on feedback processing during speech production that I designed, collected

data for, and analyzed during my tenure as a PhD student. Chapter 2 is a

noninvasive scalp EEG study of speaker-induced suppression during a reading

and listening task, the results of which are also published in Journal of Cogni-

tive Neuroscience (Kurte↵ et al. 2023). Chapter 3 is an invasive sEEG study

collected in patients undergoing intracranial monitoring for epilepsy surgery

that uses the same materials as the first study. These results are currently un-

dergoing peer review and are available as a preprint on bioRxiv Kurte↵ et al.

(2024). The rest of Chapter 1 will provide a review of the concepts necessary

to provide context and motivation for these experiments.

1.1 Speech production and speech motor control

Speech motor control refers to a series of online predictive and correc-

tive cognitive and sensorimotor mechanisms taking place during articulation.

This is also referred to in the literature as speech monitoring (Gauvin & Hart-

suiker 2020). The “speech” in “speech motor control” suggests an extent

of domain-specificity, but animal models suggest speech motor control is an

emergent process of domain-general motor control mechanisms. For example,
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Schneider et al. (2014) demonstrated using intracellular recordings that mice

who run on a treadmill that generates a certain tone during locomotion begin

to inhibit neural responses to that tone, an example of auditory-motor inter-

action outside the speech domain and a likely precursor to the suppressive

mechanisms at play during speech motor control in humans, namely speaker-

induced suppression (§1.2.3.1). To connect general motor control mechanisms

to speech motor control, studies like Martikainen et al. (2005) have found a

similar inhibition of neural responses to a tone generated by button presses in

the human brain. Both studies presented in Chapters 2 and 3 of this disser-

tation investigate neural responses to self-generated auditory feedback during

speaking, putting them in the domain of speech motor control. I am specifi-

cally interested at looking at the spatial and temporal dynamics of suppressive

mechanisms during speech production, which I will review in §1.2.3.1. First,

I will provide a review of the theory of speech motor control, as the barri-

ers to studying speech production with neuroimaging methods have created a

deeper literature on speech motor control in purely behavioral psycholinguistic

studies.

Willem “Pim” Levelt’s work in the 1990s serves as a progenitor for

modern theories of speech production and speech motor control(Levelt 1993).

Levelt’s model of speech production outlined a sequential, multi-step model of

the processes required to formulate a thought into an articulated utterance,

beginning with retrieval of lexical-semantic information (which he refers to as

lemmas), followed by a series of morphosyntactic transformations, then phono-

33



logical encoding. At this point, the speaker knows what words to say, what

order to say them in, and what sounds are necessary to produce those words.

This linguistic code is whisked away to what Levelt described as “output sys-

tems,” where articulation would be carried out by the vocal organs and parts

of the central nervous system that govern those organs. While these output

systems were the final steps in Levelt’s model of speech production, they’re

only the first steps for speech motor control.

A simplified schematic of a theoretical framework for speech motor con-

trol is provided in Figure 1.1. At a macroscopic level, models of speech motor

control split the process into feedforward and feedback control systems. The

feedforward system utilizes a phonetic program akin to the final component

of Levelt’s original model of speech production, meaning feedforward control

begins prior to articulation with the transformation of an abstract linguistic-

phonological code into a series of explicit articulator movements. Articulatory

kinematics have corroborated physiological reality in neural representations:

Chartier et al. (2018) used linear modeling to show that sensorimotor cor-

tex tracks the kinematics of speech articulators like the upper/lower lip, jaw,

larynx, and tongue in real time during articulation.
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Vocal tract
Positioning and
coordination of

articulatory and vocal 
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acoustic output of speech

Control system
Executive mechanism 
that initiates and halts 
articulation/phonation

Internal forward
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Estimation of what speech 
output “should be,”

linguistically, acoustically, 
and motorically

(“efference copy”)

Feedback monitoring system
Integrates forward model with ongoing 

sensory feedback. A mismatch results in a 
corrective signal being sent to the control 

system and an update to the forward model

Sensory processing 
system

Shared in large with the 
speech perception system; 

processes incoming acoustic, 
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proprioceptive feedback of 
ongoing speech

(“corollary discharge”)

Speech
The final acoustic output 
of the language, speech 
production, and speech 
motor control systems

Motor process
(efferent)

Sensory process
(afferent)

Control process
(reafferent)

Figure 1.1: Simplified schematic of speech motor control.
Adapted from models presented in Hickok (2014); Shadmehr & Krakauer
(2008); Houde & Nagarajan (2011).

When speech is initiated, the control system sends the articulatory com-

mands to the vocal organs and simultaneously constructs an internal forward

model of speech. This feedforward control mechanism is commonly referred

to as the e↵erence copy (or internal loop), an important component of every

contemporary model of speech motor control. The e↵erence copy represents

a set of sensory expectations about the content of an utterance that is gener-

ated during prearticulatory planning of that utterance (Greenlee et al. 2013;

Behroozmand & Larson 2011; Zheng et al. 2010; Hawco et al. 2009; Hashimoto

35



& Sakai 2003). Minimally, the e↵erence copy contains a representation of the

expected auditory, somatosensory, and proprioceptive consequences of a given

utterance. The rapid timescale of articulation necessitates the existence of a

feedforward predictive mechanism like the e↵erence copy. The brain’s percep-

tual system processes changes in auditory feedback with a ⇠30-100 millisecond

latency, meaning a purely feedback-based system could not correct changes

quickly enough for what is observed in natural speech (Houde & Nagarajan

2011). Feedforward control also explains how speakers are able to accurately

control speech even in situations where sensory feedback is unavailable or un-

reliable.

The goal of the feedback control system is to monitor the relevant sen-

sory output (or corollary discharge, outer loop) generated by the speaker in

real time. Ongoing comparisons between feedforward expectations and the

feedback sensations are made as the speaker articulates by a feedback moni-

toring system. The underlying phonetic-to-acoustic transformation that drives

feedforward control also generates these expectations about the acoustic and

proprioceptive/tactile consequences of speech. Any dissonance between the

predictions of the feedforward control system and sensory processing of the

feedback control system means the speaker has somehow failed to articulate

the intended utterance, which triggers a series of corrective processes and a re-

updating of the forward model so that speech can continue onwards as planned.

This process is usually split into error detection and error correction.
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1.1.1 Theoretical models of speech motor control

The Directions Into Velocities of Articulators, or DIVA model, is a pop-

ular anatomically and computationally explicit model of speech motor con-

trol (Tourville & Guenther 2011). At a macroscopic level, the model splits

speech motor control into a feedforward and feedback system similarly to the

simplified model I presented in Figure 1.1. During pre-articulatory speech

preparation, a speech sound map is generated that transforms a phonetic pro-

gram generated by the language network into explicit velocities of articulators

(hence the name of the model). The feedback component of DIVA concep-

tualizes the e↵erence copy as a series of “auditory and somatosensory target

maps” (Tourville & Guenther 2011). Also generated during feedback control

are inhibitory “error maps” that, assuming proper accordance between feed-

back perception and the predictions of the e↵erence copy, suppresses the neural

responses to sensory feedback. In this dissertation, I refer to this phenomenon

as speaker-induced suppression, which I will discuss further below (§1.2.3.1).

Error detection is the responsibility of the feedback control system in DIVA;

when errors are detected, an error signal is sent to a feedback control region

in ventral motor cortex, which converts the perceived errors into corrective

motor commands. The corrections are then re-integrated into the feedforward

controller.

The hierarchical state-feedback control (HSFC) and Feedback-Aware

Control of Tasks in Speech (FACTS) models are an additional family of theo-

retical models of speech motor control that draw inspiration from feedback per-
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turbation research and motor control research in non-speech domains (Houde

& Nagarajan 2011; Parrell et al. 2019). In feedback perturbation paradigms,

sensory or auditory feedback is manipulated in real time during speech. Speak-

ers are able to rapidly compensate for many di↵erent methods of perturbation,

suggesting a dynamic role for feedback control. In the HFSC model, the brain

first estimates the state of the speech mechanisms, then it generates a set of

motor controls based on its estimation. This is in contrast to theories that the

full state of the speech mechanisms is available to the motor control network;

the authors of the HSFC model argue that such a reality would render any

feedforward motor control irrelevant (Houde & Nagarajan 2011). The “feed-

back” in “state-feedback” refers to the idea that the internal state estimate of

the speech mechanisms is updated via sensory feedback. The FACTS model

is perhaps best viewed as an update of the HSFC model that assumes the

state estimation process present in the HSFC model to be nonlinear in na-

ture to compensate for the influence of the top-down goals of the speaker (i.e.,

communicative intent; Parrell et al. (2019)).

One criticism of the DIVA1, HSFC, and FACTS models is that they

focus primarily on phonological processing and feedback control without pay-

ing enough attention to pre-articulatory speech planning, which likely contains

lexical, morphological, and syntactic components as well according to conven-

1The updated gradient order DIVA (GODIVA) model Guenther (2016) extends DIVA to
account for multisyllabic planning and does contain more explicit theorization of sequence
formation than the original DIVA model, but is still ambiguous to how morphosyntactic
planning occurs as it is still primarily a speech motor control model.
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tional theory (Gauvin & Hartsuiker 2020). For the purposes of my dissertation

research, which focuses primarily on feedback control, these criticisms are less

noticeable, but I would like to mention two competing theories that pay closer

attention to the pre-articulatory and feedforward components of speech mo-

tor control. The perceptual loop theory (PLT) posits that both feedforward

and feedback control are dependent on perceptual systems (Indefrey & Lev-

elt 2004). PLT has been criticized for assuming that perceiving one’s own

speech uses the same perceptual processes of perceiving the speech of oth-

ers, which is contradicted by speaker-induced suppression (§1.2.3.1; Gauvin &

Hartsuiker (2020)). Conflict monitoring accounts arose as a response to PLT

and infer that feedforward and feedback control are instead dependent on spe-

cialized mechanisms of the speech production system (Gauvin et al. 2016). In

this model, feedforward control takes place through detection of conflict be-

tween potential response options by a domain-general executive system. This

is in line with neurophysiological evidence that auditory areas such as the

superior temporal gyrus (STG) are silent prior to articulation, but assuming

feedback control is strictly within the domain of production systems conflicts

with evidence that auditory areas are active (albeit suppressed) during speech

production (Cheung et al. 2016).

1.1.2 Neuroanatomy of speech motor control

A broad overview of the neuroanatomy of the speech production, per-

ception, and motor control networks is provided in Figure 1.2, which I will
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reference when appropriate throughout this section.
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Figure 1.2: Neuroanatomy of speech perception, speech production,
and speech motor control.
Top: Reconstruction of lateral pial cortex from the cvs avg35 inMNI52 tem-
plate brain. Bottom: Inflated reconstruction of the same template brain.
Anatomical boundaries added manually using boundaries from the Destrieux
atlas (Destrieux et al. 2010).
(A) Canonical “Broca’s area” as popularized by Broca (1865); Geschwind
(1970). The definition I endorse here is pars triangularis and pars opercu-
laris of the IFG, although many are utilized in the literature (Tremblay &
Dick 2016).
(B) Temporoparietal junction, or “area Spt” (Hickok et al. 2009). Combines
with pSTG (E) to form canonical “Wernicke’s area.”
(C) Anterior temporal lobe / temporal pole.
(D) Middle STG.
(E) Posterior STG. Combines with temporoparietal junction to form canonical
“Wernicke’s area.”
(F) Ventral precentral gyrus. Also referred to as ventral motor cortex. Con-
tains the ventral precentral speech area described by Hickok et al. (2023); its
anterior boundary is sometimes confused with Broca’s area (Tremblay & Dick
2016). Contains functional regions for laryngeal control (Breshears et al. 2015)
and speech arrest (Zhao et al. 2023).
(G) Pars orbitalis of the inferior frontal gyrus.
(H) Middle precentral gyrus. Contains the dorsal precentral speech area de-
scribed by Hickok et al. (2023). Contains functional regions for laryngeal
control (Breshears et al. 2015), speech planning (Silva et al. 2022), and speech
arrest (Zhao et al. 2023).
(I) Area 55b, or posterior middle frontal gyrus. Involved in speech planning
and recently described in several case studies as an anatomical locus of apraxia
of speech (Chang et al. 2020; Levy et al. 2023).
(J) Heschl’s gyrus. Sits in the Sylvian fissure atop the STG. Part of primary
auditory cortex with PT (K).
(K) Planum temporale. Sits in the Sylvian fissure atop the pSTG. Part of
primary auditory cortex with Heschl’s gyrus (J).
(L) The Sylvian fissure. Expanded views of intra-Sylvian structures (insula,
temporal plane) are provided and also labeled in inflated space.
(M) Anterior insula (short gyrus). Historically an anatomical locus of apraxia
of speech (Dronkers 1996).
(N) Posterior insula (long gyrus). Location of the insular auditory field (§4.2).
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Neurobiologically, speech production was originally localized to the pos-

terior inferior frontal gyrus (IFG), commonly referred to as “Broca’s Area”

(Broca 1865) (Figure 1.2A). This view of speech production pervaded research

throughout most of the 19th century as early modern theories of language con-

gealed (Geschwind 1970). A three-part model, consisting of Broca’s area for

speech production, Wernicke’s area for speech perception (Figure 1.2B), and

the arcuate fasciculus as a white matter pathway linking the two exists almost

monolithically in medical textbooks even half a century later in the present

day (Tremblay & Dick 2016). Contemporary theories of the neurobiology of

language have attempted to update the “Classic Model” described above in a

fashion that is in line with modern empirical research. The most popular of

these, the Dual Stream Model, takes heavy inspiration from vision research,

which has its own dual stream model that it was able to construct due to a

several-decade head-start on language research, as vision can be studied in an-

imal models while language cannot (Hickok & Poeppel 2007). Perception and

production are not dichotomized to the same extent in the Dual Stream model

as they are in the Classic Model, but production is mostly confined to the dor-

sal “how” stream while perception is mostly confined to the ventral “what”

stream. The dorsal stream is conceptualized as the transformation of the ab-

stract intent of speech into concrete articulatory-motor programs through a

series of phonological representations. For example of how this dichotomy

di↵ers from the production-versus-perception dichotomy of the Classic Model,

electrical stimulation of temporal cortex during awake brain surgery can result
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in errors of speech production such as naming and phonological errors (Miozzo

et al. 2017). These errors are theorized to arise from di�culties with lexical-

semantic processing localized to the anterior temporal lobe (Figure 1.2C) and

phonological processing localized to the superior temporal gyrus (Figure 1.2D,

E), respectively (Jackson et al. 2016; Mesgarani et al. 2014), two forms of rep-

resentation that are part of the ventral “what” stream but still able to impact

speech production despite their localization to temporal cortex.

1.1.2.1 Feedforward control

The neuroanatomy of speech motor control is usually anatomically sep-

arated by feedforward and feedback control. The DIVA model is the most

anatomically explicit model of speech motor control and prescribes every stage

of the process to specific brain regions (Tourville & Guenther 2011). DIVA

localizes the anatomical seat of feedforward control to ventral motor cortex

(Figure 1.2F) and inferior frontal cortex (Figure 1.2A,G). Ventral sensorimo-

tor cortex is close to laryngeal motor control, speech planning, and speech

arrest regions of interest that were described after the 2011 DIVA update with

high-resolution intracranial neuroimaging (Breshears et al. 2015; Silva et al.

2022; Zhao et al. 2023). Higher-order phonetic information enters ventral mo-

tor cortex through premotor cortex, a loosely defined anatomical region in the

posterior inferior frontal gyrus and precentral gyrus (Figure 1.2 A,F,H). Here is

where linguistic/phonetic information is converted into an articulatory motor

program which tells primary motor cortex (i.e., the precentral gyrus; Figure
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1.2 F,H) when and how to move each articulator. Stimulation to the premo-

tor cortex results in speech arrest, a commonly observed phenomenon during

neurosurgical mapping where continuous speech is halted without any evident

motor interference (Zhao et al. 2023). This emphasizes the role of premotor

cortex in DIVA as a phonetic-to-articulatory encoding region, as speech arrest

can be conceptualized as the prevention of translation of phonetic-linguistic in-

formation into an articulatory motor program (Tate et al. 2014). Alternatively,

speech arrest in premotor cortex might index speech inhibition rather than

phonetic-to-articulatory encoding. Zhao et al. (2023) combined cortical stim-

ulation with intracranial electrocorticography (ECoG) to show stimulation-

induced speech arrest sites anatomically overlap with a speech inhibition task,

which suggests ventral premotor cortex plays an inhibitory role in speech mo-

tor control. To relate this to a conceptual framework of speech motor control,

corrective signals issued by the feedback control system are sent back to premo-

tor cortex in the DIVA and HSFC models to adjust articulatory programs and

re-update the e↵erence copy for continuing error monitoring post-correction.

An inhibitory speech-stopping mechanism localized to premotor cortex would

thus assist in halting speech to issue corrections.

While the ventral precentral gyrus (Figure 1.2F) is the seat of articulatory-

kinematic representations, the just-anterior inferior frontal gyrus (Figure 1.2A;

canonically “Broca’s area’) is the seat of phonetic representations that serve

as the input for the process of feedforward control. Flinker et al. (2015) sup-

ports this pre-articulatory role for Broca’s area by showing that Broca’s area is
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silent during articulation, as at the time of articulation, the phonetic represen-

tations would have already been shipped o↵ to motor cortex and transformed

into an articulatory program. This distinctly pre-articulatory role for Broca’s

area is contrary to classic views of Broca’s area as a speech production region

(Geschwind 1970).

A more recent proposal outlines a functional region in the sensorimotor

cortex described by Silva et al. (2022) as the middle precentral gyrus and by

Hickok et al. (2023) as the “dorsal precentral speech area,” putting it dorsal of

the primary motor areas used in speech motor control posited by DIVA (Fig-

ure 1.2H). This region encompasses the dorsal laryngeal motor control areas

documented in Dichter et al. (2018) and serves a myriad of roles in speech

production. Interestingly, Silva et al. (2022) proposes a role for middle pre-

central gyrus in motor coordination, an important component of speech motor

control. This is a notable departure from historical accounts of sensorimotor

cortex as the proposed role of motor coordination is not a “primary” motor

role, meaning implicating the middle precentral gyrus in motor coordination

implies the region may perform more higher-order computations than previ-

ously believed. Indeed, this classification of middle precentral gyrus is more in

line with how speech motor control literature discusses premotor cortex, which

is anterior and ventral to this region (Figure 1.2I). Several case studies report

that lesions to the neighboring area 55b (part of the middle frontal gyrus)

result in apraxia of speech, a disorder of motor coordination, corroborating

Silva et al. (2022)’s claims that the middle precentral gyrus is implicated in
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motor coordination (Levy et al. 2023; Chang et al. 2020).

The cerebellum also plays a notable role in several aspects of speech mo-

tor control, which at first glance appears explainable by the structure’s more

general involvement in motor control (Manto et al. 2012). However, individu-

als with cerebellar degeneration directly associate the region with feedforward

speech motor control, as these individuals exhibit less of an anticipatory re-

sponse to feedback perturbation, followed post-perturbation by an increased

corrective response Parrell et al. (2017, 2021). This demonstrates that indi-

viduals with cerebellar degeneration over-rely on feedback control due to an

impaired feedforward control system.

1.1.2.2 Feedback control

While feedforward control is commonly prescribed to sensorimotor and

inferior frontal cortex, feedback processing mechanisms are commonly mapped

to the superior temporal gyrus (Figure 1.2E). The temporoparietal junction, or

area Spt (Figure 1.2B), is also posited as a seat for auditory-motor integration

during the feedback control process within the Dual Stream model (Hickok &

Poeppel 2007; Hickok et al. 2009).

Error detection and correction, which involve comparing internal pre-

dictions about sensory feedback with ongoing sensory feedback, are localized

to ventral sensorimotor cortex in DIVA (Figure 1.2F). In ventral motor cor-

tex, perceived errors are converted into corrective motor commands, which

are re-integrated into the feedforward controller. The feedforward control sys-
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tem likely contains anatomically distinct error detection and correction loci,

given errors can be corrected incredibly early in an utterance, before the au-

ditory system would have access to auditory feedback (Gauvin & Hartsuiker

2020; Houde & Nagarajan 2011). Gauvin et al. (2016) used fMRI to local-

ize feedforward error correction to the dorsal anterior cingulate. The authors

characterize this region as a domain-general executive center.

1.2 Speech perception

Although speech motor control is a process that occurs during speech

production, the focus of my dissertation primarily on feedback control neces-

sitates a discussion of the mechanisms of speech perception and the auditory

system. The neurobiology of speech perception is more well-understood than

speech production as there are less methodological considerations for passive

listening tasks than there are for speech production tasks: articulator move-

ment artifact during speech production can render many types of neural signal

too noisy to analyze (Vos et al. 2010; Shackman et al. 2009; Burgess 2020;

Bush et al. 2022; Shuster 2003). While this may be construed as a limitation

of speech production research, it is also an advantage of feedback control re-

search: there is a large body of adjacent speech perception research to draw

upon in a similar vein to how adjacent vision research informed contempo-

rary theories of speech perception and production (Hickok & Poeppel 2007).

For example, an abundance of speech perception research has revealed that

the auditory system processes speech di↵erently during feedback control when
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compared to passive listening, which I will discuss in detail (§1.2.3). But first,

I will provide an overview of how speech perception functions in the brain to

give context for its modulation during speech production.

1.2.1 Organization of the auditory system

For the cerebral cortex, audition begins in the temporal lobe, which

contains the primary auditory cortex (A1). A1 is located in Heschl’s gyrus

(HG) (Figure 1.2J) and planum temporale (PT) (Figure 1.2K) on the supe-

rior surface of the lobe and tucked into the Sylvian fissure (Figure 1.2L). A1

receives ascending auditory input from the subcortical auditory nuclei (Moore

et al. 2010). However, the temporal lobe is not a monolithic primary audi-

tory area, as it plays a role in many higher-order aspects of speech perception.

This is evidenced in part by direct electrical stimulation of the temporal cor-

tex during neurosurgery, which results in a multitude of perceptual e↵ects,

including auditory hallucinations when A1 is stimulated and scaling up the

linguistic hierarchy into higher-order language comprehension errors when non-

primary areas of the temporal lobe are stimulated (Hamberger 2007; Hamilton

et al. 2021). Invasive electrophysiology (sEEG and ECoG) has also demon-

strated that higher order auditory areas, primarily STG, are involved with

abstraction of acoustic sensory information into higher-order linguistic fea-

tures such as phonemes (Mesgarani et al. (2014); §1.2.2). Clinical observations

that most cases of aphasia caused by temporal lobe injury have a primarily

comprehension-based impairment profile (Manasco 2013) further corroborates
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the multiple roles of the temporal lobe in speech perception.

The parietal lobe is, upon initial inspection, absent from the Classic

Model, but is regardless critical for speech perception. Cortical stimulation

accounts from several neurosurgeons report that the functional localization

of Wernicke’s area extends into the parietal lobe (Penfield & Roberts 1959;

Lewandowsky 1912), although there is still a lack of consensus among cogni-

tive linguists about the specific localization of Wernicke’s area, with a survey

presented in Tremblay & Dick (2016) reporting that only 26% of survey re-

spondents endorsing a definition of the region that included portions of the

parietal lobe. The parietal lobe plays a more prominent role in the Dual Stream

model as it houses a region of the planum temporale near the temporo-parietal

junction commonly referred to as “area Spt2,” (Figure 1.2B) which serves as

a sensorimotor interface for speech by transforming sensory input into motor

commands for the articulatory system (Hickok & Poeppel 2007; Hickok et al.

2009). However, Spt is not thought to be a domain-specific speech or language

region in the same way as the frontal and temporal regions of the language

network: Spt has clear homologues in non-human primates (Cui & Ander-

sen 2007), and is active during nonspeech vocalizations (Hickok et al. 2003).

Most of the dorsal and posterior parietal lobe is not widely believed to play

an active role in speech perception, instead supporting the process through

more domain-general functions such as the frontoparietal attention network

2Area Spt is not formally localized to an anatomical structure and is instead function-
ally defined; however, most functional localizations place it around the temporo-parietal
junction.
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(Fedorenko et al. 2013; Germann & Petrides 2020; Meyyappan et al. 2021).

The involvement of the frontal lobe directly in speech perception (cf.

indirectly through attentional mechanisms; §1.2.3.3) is currently a topic of

debate, as research in the past ten years has almost conclusively determined

that Broca’s area as specified by the Classic Model is not a useful label for

a locus of speech production (Flinker et al. 2015; Fedorenko & Blank 2020;

Tremblay & Dick 2016). The role of the frontal lobe is further complicated by

the motor theory of speech perception (Liberman et al. 1967), a historically

influential theory of speech perception that is now widely discredited (Liber-

man et al. 1967; Massaro & Chen 2008). The motor theory states that frontal

motor systems are recruited for perceiving speech through gesture perception.

While the motor theory does have some contemporary supporters (Galantucci

et al. 2006; D’Ausilio et al. 2009), there is an abundance of evidence in the

contrary that uses modern neuroimaging to show that while the motor cor-

tex does encode speech features during passive listening, these representations

are based on auditory information and not perceived gestures, meaning the

auditory system is still supraordinately important for speech perception over

any motor system involvement (Arsenault & Buchsbaum 2016; Cheung et al.

2016; Du et al. 2014). The results I present in Chapter 3 include purely percep-

tual responses localized to the IFG (Figure 1.2A, G); however, these responses

were confined to a single subject and could not be replicated elsewhere in my

dataset (Figure B.2).

Areas of the brain beyond lateral cortex are also important for speech
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perception. These are of particular interest for sEEG (Chapter 3), as many

methods of neuroimaging have limitations that prevent high-fidelity recording

of subcortical regions that sEEG bypasses by directly penetrating the cere-

brum. For example, the thalamus is a subcortical structure that plays an

important role as a general sensory relay to the cortex. For speech, this means

the thalamus projects directly to primary auditory cortex (Dick et al. 2012).

Perhaps more surprisingly, it is hypothesized that the thalamus also directly

projects to speech perception areas in non-primary auditory cortex, suggesting

the thalamus may be specialized for speech beyond its role as a more general

sensory relay (Hamilton et al. 2021). Additionally, the amygdala forms a

functional network with anterior insula (Figure 1.2M) that is active during

processing of suprasegmental emotional components of speech (Zhang et al.

2018). The insular cortex, a lobe sequestered within the Sylvian fissure which

divides the frontal and temporal lobes, is of particular interest to my disser-

tation results. The insula is historically underrepresented in neurobiological

models of speech and language, in part due to how di�cult it is to obtain

in vivo recordings from the human insula: its placement underneath the pial

cortical surface means that traditional ECoG grids are insu�cient to reach it,

making dissection of the Sylvian fissure necessary (Remedios et al. 2009). For

the same reason, direct cortical stimulation of the insula is also rare (Zhang

et al. 2018). The relatively recent advent of sEEG depth electrodes has made

recording from the insula much easier, as sEEG can penetrate through pial

cortex into the insula with minimal surgical preparation (Youngerman et al.
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2019). The original sEEG research I present in this dissertation includes an

unexpected finding in the insula (§3.5), which I personally attribute to the

relative nascency of high-resolution insular recordings in humans. Among the

large swath of brain regions I recorded from in my study, the posterior in-

sula (Figure 1.2N) uniquely showed low-latency “onset” responses (§1.2.2.1)

to speech production and speech perception stimuli. This insular response

profile is most similar to primary auditory areas in temporal cortex that show

low-latency responses to speech perception. The timing of these responses

resembles primary and secondary auditory responses, leading me to theorize

that the insula receives parallel thalamic sensory input to the primary auditory

cortex. This means that the insula processes auditory stimuli in parallel to

primary sensory areas during speech production, similar to the putative par-

allel thalamic input supplied to the posterior STG in Hamilton et al. (2021).

If my theory is true, this could implicate the insula directly in speech motor

control, as rapid attention to auditory feedback during speech production is a

critical component of feedback control mechanisms present in models of speech

motor control (Houde & Nagarajan 2011).

1.2.2 Linguistic abstraction

Linguistic abstraction is the process by which variable acoustic infor-

mation is perceived as the invariable linguistic content. For example, if the

same sentence is spoken by a frail grandparent with a delicate voice and a

towering basketball player with a booming voice, our perceptual systems can

52



somehow extract the same communicative meaning from the variant frequency,

amplitude, and timbre. In a sense, humans can understand the meaning of

speech in a fashion seemingly separated from of the acoustic properties of the

waveform. Most, if not all, conventional models of the neurobiology of lan-

guage agree that linguistic abstraction takes place during speech perception

as a fundamental precursor to language comprehension. Many models extend

this claim by specifying the linguistic substrates used in abstraction of sensory

information. This is inspired by a seminal work from the 1990s that set the

stage for modern research into the neurobiology of language by introducing

the “lack of invariance problem,” which describes a gap in our understanding

of cognitive neuroscience concerning the transformation of continuous, topo-

logically organized perceptual stimuli (e.g., frequency) and discrete abstract

(or “invariant”) categories of representation (e.g., words; Appelbaum (1996)).

The specifics of how the brain performs this task are of interest to my disser-

tation research.

Despite several robust hypotheses, there is no current consensus for

how the brain performs the task of linguistic abstraction and the “lack of

invariance problem” is very much a topic of debate in modern cognitive lin-

guistics. A common theory still being explored today could provide the phys-

iological reality that linguists seek for their theoretical constructs: linguistic

units such as phonological features (Mesgarani et al. 2014), syllables (Sun &

Poeppel 2023), and morphemes (Khanna et al. 2024) are theorized interme-

diate abstract representations of low-level acoustic stimuli. The hierarchical
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organization and anatomical localization of these intermediate representations

are an unresolved topic in the field. While the brain’s intermediate represen-

tations have conventionally been conceptualized as a sequential process that

transforms low-level sensory stimuli into serially more abstract representa-

tions, recent intracranial research suggests the process may be more parallel

than previously suspected. Hamilton et al. (2021) used surgically implanted

ECoG grids to look at how primary and non-primary auditory areas encode

information during passive listening to sentences and showed that the flow

of information between these areas was not sequential but instead parallel

and/or reciprocal. That is, primary and non-primary areas exhibited inter-

tangled response latencies and feature representations that did not support

the conventional theory of step-by-step serial processing of information from

primary to non-primary auditory cortex. The analysis methods present in this

study are similar to what I utilize in Chapter 3, where I find a similar non-

serial auditory processing in primary/non-primary auditory cortices as well as

the posterior insula, replicating and expanding on this work to better char-

acterize how the brain forms abstract representations of speech and language

from continuous acoustic stimuli.

1.2.2.1 Onset and sustained responses

Phonemes in particular are a popular candidate for invariant represen-

tational unit during speech production and perception (Mesgarani et al. 2014;

Cheung et al. 2016; Khanna et al. 2024), but their organization within auditory
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cortex is modulated by suprasegmental characteristics of speech. In what is

unquestionably the largest source of inspiration for my dissertation research,

Hamilton et al. (2018) used an unsupervised clustering technique on ECoG

responses during a passive listening task to identify two anatomically distinct

response profiles in the auditory cortex. The first, labeled “onset” responses,

were characterized by a high-amplitude, low-latency transient response at the

beginning of the acoustic onset of a sentence or phrase (i.e., after > 200 mil-

liseconds of silence). “Sustained” responses, on the other hand, were relatively

delayed when compared to onset responses and could happen throughout the

timecourse of the sentence rather than exclusively at the onset. Notably, a

breadth of phonological feature representations were observed separately in

the onset and sustained regions, meaning that electrodes that prefer specific

classes of phonological features were present in both regions. This suggests

that onset and sustained response profiles are not subordinate to phonological

feature representations but rather a supraordinate organizational feature of

auditory cortex. Lastly, Hamilton et al. (2018) posited that onset responses

in particular may serve as a temporal “reference frame” in continuous speech

given that they only appear at boundaries, supported by the result that onset

responses could be used in a decoding framework to predict sentence bound-

aries. Segmentation of speech is regarded as a fundamental characteristic of

linguistic abstraction as one of the earliest transformations of acoustic informa-

tion into invariant perceptual representations (Appelbaum 1996). The combi-

nation of onset and sustained responses’ ability to modulate the phonological
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feature tuning of an individual electrode and the notion that onset responses

serves a role in temporal landmark detection during speech perception led me

to wonder if these organizing features could di↵er during speech production, as

robust feedforward expectations about upcoming utterance content (i.e., the

e↵erence copy) could negate the need for a segmentational cue and could ex-

plain the amplitude reduction observed in auditory responses to self-generated

speech (§1.2.3.1).

1.2.3 Auditory feedback processing

The auditory system processes internally generated speech di↵erently

than externally generated speech through the direct activation of sensory sys-

tems by the motor system, a process known as corollary discharge (Schneider

et al. 2014; Khalilian-Gourtani et al. 2022). Corollary discharge is the primary

mechanism through which feedback control is performed and, in the case of

speech production, often leads to a suppression of auditory cortical activity to

internally generated speech (§1.2.3.1). This is not always the case, however:

several studies have identified antithetical enhancement to internally gener-

ated speech in the auditory cortex, yet in these studies enhancement e↵ects

are usually a secondary result to a primary suppression e↵ect (Greenlee et al.

2011; Chang et al. 2013). Auditory feedback processing can also be impaired

in schizophrenia: a prevailing theory for the source of auditory hallucinations

present in the disorder is an inability for the auditory system to distinguish

internally generated and externally generated speech (Heinks-Maldonado et al.
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2007; McGuire et al. 1995; Johns et al. 2001). Abnormal auditory feedback

processing has also been associated with dyslexia (van den Bunt et al. 2017)

and cerebellar degeneration (Parrell et al. 2017).

1.2.3.1 Speaker-induced suppression

Speaker-induced suppression (SIS) is the primary neural biomarker of

auditory feedback processing (Niziolek et al. 2013; Houde & Chang 2015). SIS

refers to a phenomenon where neural responses to self-generated speech are

reduced in amplitude (suppressed) compared to the speech of others. Related

phenomena regarding suppression of self-produced nonspeech sounds can be

observed in animals (Schneider et al. 2014) and in humans triggering sounds

via button press (Martikainen et al. 2005). Even though perception of inter-

nal state and, even more explicitly, suppression of self-generated sensation are

common mechanisms in general models of motor control (Houde & Nagarajan

2011; Parrell et al. 2019), SIS is not considered a domain-general mechanism,

nor does it reflect a general suppression of neural activity. Houde et al. (2002),

one of the earliest studies demonstrating SIS in neural data, formulated the

theory that SIS arises from a comparison of sensory feedback with the forward

e↵erence copy through a series of magnetoencephalography (MEG) experi-

ments. This idea is well-supported in the literature and eventually made it

into the DIVA model through the presence of inhibitory error maps as part of

the feedback control system (Tourville & Guenther 2011).

At first it may seem unintuitive that an active monitoring process would
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result in a reduction of neural response, but studies have shown that SIS is a

trace of the feedback monitoring system by demonstrating that the amount of

cortical suppression is reduced during a speech error (Ozker et al. 2022, 2024;

Houde et al. 2002; Behroozmand & Larson 2011). Studies like these directly

associates SIS with feedback comparison mechanisms and show that SIS can

be modulated by the adherence (or deviation) of corollary discharge to the

e↵erence copy. This establishes SIS as a neural trace of the state estimation

systems present in the HSFC and FACTS models (Houde & Nagarajan 2011;

Parrell et al. 2019). Of particular importance to my dissertation is a section

in the discussion of Niziolek et al. (2013), which writes about the neural repre-

sentations present in sensory cortex during SIS3. To connect the dots, Niziolek

et al. (2013) wrote that SIS is sensitive to subphonemic variation, or acous-

tic changes within a phonemic category (e.g., di↵erences in voice onset time

between two utterances of the sequence /ba/). In this study, the feedback mon-

itoring system’s response to individual productions of a given vowel depended

on the acoustic proximity of an individual utterance to the average produc-

tion of that vowel throughout the task. This demonstrates that the e↵erence

copy is not a literal series of articulatory commands sent to primary motor

cortex; if that were the case, the subphonemic variations of individual trials

would be present in the e↵erence copy and the degree of mismatch between

feedforward and feedback systems would never change for non-error trials.

3As a reminder, the nature of abstract representations during speech perception (and
production) is a question of great interest to cognitive scientists (often called the “lack of
invariance problem;” §1.2.2; Appelbaum (1996)).
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So, because the mechanisms of the feedback control system are dependent on

subphonemic variation despite that variation being absent from the e↵erence

copy, the feedforward system must contain some degree of abstraction away

from the actual articulator kinematics. This is in line with the FACTS model’s

statements about how speech is a goal-oriented behavior: the e↵erence copy

represents a sensory goal, not an explicit sensory target. Niziolek et al. (2013)

conclude this discussion section by speculating on the nature of abstraction

present in the e↵erence copy. Does abstraction take place when the e↵erence

copy is generated in premotor cortex, or are the rough edges of individual

trial variation “smoothed o↵” via abstraction later on in sensory cortex (for

example, a process akin to the phonological feature abstraction observed in

Mesgarani et al. (2014))? The authors used a comparison to error literature

to conclude that the e↵erence copy itself is likely abstract before it reaches

feedback control systems in auditory cortex. The decreased SIS observed in

trials farther away from the average vowel production is reminiscent of the

decreased SIS observed in speech errors (Houde et al. 2002; Behroozmand &

Larson 2011), even though the “less good” trials were not consciously realized

as errors by the speaker (i.e., there was no corrective behavior). This sug-

gests the e↵erence copy contains representational information as even though

there was sensory mismatch in the feedback, there was no mismatch in the

higher-order representational space (e.g., phonemes) used by e↵erence copy,

which would have triggered an error correction signal. The specific nature of

the abstract representations in the e↵erence copy posited by Niziolek et al.
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(2013) are unspecified by the authors and a major source of inspiration for

both studies presented in my dissertation (Chapters 2 and 3).

1.2.3.2 Interaction with onset responses

To recap, SIS is a neurophysiological trace of the error detection/correction

component of the speech motor control network that engages in linguistic ab-

straction like the perceptual system, but with an unspecified mechanism. The

less neural activity during SIS, the greater the adherence of the sensory feed-

back to the feedforward expectation. Interestingly, the N1 component of the

neural response documented by Niziolek et al. (2013) and others as being

suppressed during SIS bears a spectrotemporal similarity to onset responses

(§1.2.2.1; Hamilton et al. (2018)) in terms of its high-amplitude and low-

latency nature (Behroozmand & Larson 2011; Heinks-Maldonado et al. 2007;

Martikainen et al. 2005). While I am not attempting to conflate onset re-

sponses with the N1, both have been theorized to index speech segmentation:

onset responses in Hamilton et al. (2018) discussed above and the N1 in stud-

ies such as Sanders et al. (2002), where researchers identified N1 amplitude

increased in word-initial syllables relative to word-medial syllables during a

pseudoword learning task.

The goal of my dissertation is to study the physiology of onset responses

during speech production in an attempt to link EEG and MEG literature on

SIS to high-resolution intracranial electrophysiology studies on the mechanisms

of auditory perception. Because onset responses can modulate phonological
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feature representation, a follow-up goal of this aim is to examine if speaker-

induced suppression influences phonological feature tuning as well.

1.2.3.3 Interaction with other cognitive systems

The top-down, goal-oriented nature of the speech motor control system

demonstrated by studies like Niziolek et al. (2013) and models like Parrell

et al. (2019) show that the speech motor control system can be modulated by

top-down information4. In fact, both the speech production and the speech

perception systems can be manipulated by top-down e↵ects from other cog-

nitive systems such as attention and predictive processing. For example, be-

havioral studies of altered auditory feedback in which self-generated speech

is acoustically perturbed in real time through manipulation of pitch or other

acoustic qualities of speech (e.g., timing) show that consistent perturbations of

feedback may elicit larger corrective responses than inconsistent ones (Lester-

Smith et al. 2020), suggesting that top-down anticipations of feedback coming

from some domain-general predictive processing system (potentially a conflict

monitoring network localized to dorsal anterior cingulate described by Gauvin

et al. (2016)) may influence how the speech motor control system responds to

feedback.

Studies that show an expectancy e↵ect in EEG identify di↵erences in

later components such as the N400 and P600 (Goregliad Fjaellingsdal et al.

4DIVA, HSFC, and FACTS all localize top-down modulation on the speech motor control
system as originating anatomically from frontal cortex (Tourville & Guenther 2011; Houde
& Nagarajan 2011; Parrell et al. 2019).
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2020) as well as earlier components such as mismatch negativity (Bendixen

et al. 2014; Hawco et al. 2009; Näätänen et al. 2007) and the N1 (Astheimer &

Sanders 2011), the latter of which has been posited as a neural biomarker of

the e↵erence copy (§1.1.1; Behroozmand & Larson (2011); Heinks-Maldonado

et al. (2007); Martikainen et al. (2005)). The amplitude of the N1 is also

modulated by SIS (Niziolek et al. 2013; Kurte↵ et al. 2023).

Attentional networks can also influence responses during perception

tasks. In the EEG literature, amplitude of the N1 component is reduced

during active listening when compared to passive listening (Brumberg & Pitt

2019; Houde et al. 2002). The susceptibility of the N1, a biomarker of speaker-

induced suppression, to top-down modulations of other cognitive systems such

as attention and expectancy suggests that these cognitive systems can mod-

ulate the speech motor control system to an extent. This theoretical link

motivated the consistent/inconsistent feedback modulations present in the ex-

perimental designs of Chapters 2 and 3 of this dissertation (§2.4; 3.4).

1.3 Aims

The top-level objective of this dissertation is to investigate the neu-

ral mechanisms of feedback control using electrophysiology. Specifically, there

is a gap in the literature between speech motor control and neurolinguistics.

Speech motor control research is informed by engineering principles (Houde &

Nagarajan 2011), while research on the brain’s language network draws much

from conventional theoretical linguistics (Appelbaum 1996; Mesgarani et al.
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2014). Speech perception research has developed relatively more sophisticated

techniques and theories due to its ease of study when compared to speech

production and, therefore, speech motor control. This means that while we

may have principles of how the auditory system operates during speech per-

ception, how many of these principles remain in place during processing of our

own auditory feedback during speech production, a process we know behaves

di↵erently than passive listening due to phenomena like speaker-induced sup-

pression (§1.2.3.1), is unknown. The extent of how di↵erently feedback control

operates in comparison to passive speech perception is what I aim to investi-

gate in this dissertation.

In Chapter 2, I present the results of a noninvasive scalp EEG study

where participants speak aloud then passively listen to playback of their own

voice. The speaking condition indexes ongoing feedback control while the pas-

sive listening condition indexes speech perception in general. Any di↵erence

in neural response between the two can then be attributed to the mechanisms

of the feedback control system. In Chapter 3, I present the results of the same

speaking-playback paradigm but using intracranial recordings from epilepsy

patients. While this method yields smaller sample sizes, it a↵ords a much

higher signal-to-noise ratio and allows investigation of the role of specific brain

structures in feedback control, something impractical in EEG given the coarse

spatial resolution. In both results chapters, my analysis consists of a mixture

of conventional event-related potential analysis (Luck (2014); §2.4; §3.4) and

modern linear modeling techniques that investigate the relationship between
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stimulus characteristics and the neural response (Di Liberto et al. 2015; The-

unissen et al. 2000). The goal of the latter is to investigate how phonological

feature tuning, previously observed in auditory (Mesgarani et al. 2014) and

motor (Cheung et al. 2016) areas during passive listening, are a↵ected during

the cortical suppression of auditory feedback during speech production. I hy-

pothesize that higher-order phonological feature representations are una↵ected

by feedback control of self-generated speech.

What I do hypothesize to be a↵ected during feedback control are on-

set responses (§1.2.2.1). Onset responses are a response profile identified in

Hamilton et al. (2018) using sentence perception stimuli. An onset response is

defined as a transient high-amplitude spike of neural activity at the acoustic

edge of a stimulus; in this study and in my dissertation, that means the be-

ginning of a sentence. The reason I hypothesize onset responses to be a↵ected

during self-generated speech is due to a theorized role for onset responses in

segmentation of continuous acoustic stimuli into discrete abstract representa-

tional units (such as phonemes), a fundamental component of speech percep-

tion (§1.2.2; Appelbaum (1996)). If onset responses are present in perception

to identify the representational “edges” of a stimulus, the presence of a feed-

forward expectation about the sensory content of self-generated speech may

nullify the need for onset responses during speech production. Such a result

would also link onset responses to speaker-induced suppression, as the absence

of onset responses would explain the amplitude reduction observed in auditory

processing of one’s own speech.
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1.3.1 Clinical populations

I wanted to dedicate a section at the end of Chapter 1 to discuss the

most common speech and language pathologies applicable to the study of the

neurobiology of speech motor control. People with disordered speech and

language are the ones who serve to benefit most from basic science research

of the neurobiological mechanisms behind speech and language. Reciprocally,

without consenting participants from these clinical populations, research like

mine would not be possible. Scientists like myself have a commitment to

disseminate results in a way that can inform development of better diagnostic

and therapeutic interventions for people with disordered communication.

The bulk of neurogenic communication disorders by volume consists of

aphasia and apraxia of speech caused by middle cerebral artery stroke, the

main supply of blood to most of the lateral surface of the cerebral cortex

(Manasco 2013; Caviness et al. 2002). The most common aphasia classifica-

tion system, the Boston classification system (Goodglass & Kaplan 1972), di-

vides aphasia into categories determined by the presence or absence of deficits

in three domains: fluency, speech comprehension, and word repetition. Of

particular importance to my dissertation research are the transcortical sen-

sory/motor aphasias, as these aphasias involve interactions between the per-

ception and production systems that are not well understood (Boatman et al.

2000; Ardila 2010). A more fine-grained understanding of how specific brain

regions process auditory feedback during speech using intracranial recordings

(i.e., Chapter 3) has the potential to lead to better diagnosis of these rarer
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aphasia types. Conduction aphasia, described by the Boston classification sys-

tem as a selective deficit in word repetition, has impairment of auditory-motor

integration as a core deficit and thus also serves to benefit from my research

(Buchsbaum et al. 2011).

A concomitant pathology to aphasia that is much more directly rele-

vant to the study of speech motor control is acquired apraxia of speech (AOS).

AOS is a motor speech disorder that involves di�culty in motor speech coordi-

nation and is thus fundamentally linked to feedforward control deficits (Du↵y

2019). Notably, AOS does not involve muscle weakness like its sister disor-

der, dysarthria, meaning AOS is purely conceptualized as a coordination and

planning deficit. In foundational aphasiology research, AOS is considered a

breakdown between phonological planning and motor execution (Darley et al.

1975), but despite this, expressive (“Broca’s”) aphasia and AOS very com-

monly co-occur to an extent that many clinicians experience di�culty distin-

guishing between the two disorders (Patidar et al. 2013; Kobayashi & Ugawa

2013). Furthermore, AOS is much more rarely diagnosed than the expressive

aphasias (even moreso in isolation), limiting the number of studies on the dis-

order. Many studies on the neurobiology of AOS are case studies as a product

of this limitation (Patidar et al. 2013; Chang et al. 2020; Levy et al. 2023).

Because of the di�culties surrounding extensively researching AOS due to its

rare and often misdiagnosed nature, basic research on speech motor control,

such as the results I present in my dissertation, is important foundational

research that can lead to better diagnosis of apraxia of speech.
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Stuttering, while more commonly a developmental pathology than a

neurogenic one, is a fluency disorder that likely involves a malfunctioning

speech motor control system. Early neuroimaging research on stuttering the-

orized that people who stutter have an impairment with feedback control pro-

cessing, as evidenced by decreased activation of auditory areas during speech

production (Fox et al. 1996). Delayed auditory feedback, which does not im-

prove fluency in AOS (Jacks & Haley 2015), has a fluency-increasing e↵ect

on people who stutter, which has led to the use of delayed auditory feed-

back as a therapeutic technique in people who stutter5 (Kalinowski & Stuart

1996). The feedback control hypothesis of stuttering is strengthened by stud-

ies of speaker-induced suppression showing relatively less cortical suppression

to self-generated speech in people who stutter as compared to healthy controls

(Toyomura et al. 2020). It is possible that the feedforward control system is

also impaired in people who stutter: Max & Daliri (2019) looked at another

neurophysiological correlate of speech motor control, pre-speech auditory mod-

ulation, and found that people who stutter have reduced pre-articulatory cor-

tical evoked potential compared to healthy controls. The authors reconcile this

observation with feedback control theories of stuttering by suggesting that re-

duced pre-speech auditory modulation may reflect the feedforward controller’s

failure to properly prepare feedback control systems for upcoming auditory

feedback. Following this framework, fluency errors caused by stuttering are

5Although, the use of delayed auditory feedback as a therapeutic intervention in stutter-
ing is a topic of controversy among clinicians. See Laiho et al. (2022) for a review.
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the result of an over-corrective feedback control system trying to erroneously

correct ongoing articulation.

The pathologies of aphasia, AOS, and stuttering show that the assess-

ment and treatment of communication disorders that involve the speech motor

control system have a lot to gain from a better understanding of the neural

mechanisms underlying the process. The research I present in Chapters 2 and

3 specifically investigates how auditory feedback processing is modulated dur-

ing speech, an important mechanism for the feedback control of speech, as

evidenced by its dysfunction in stuttering. A concrete example of how my dis-

sertation could benefit these clinical populations is via informing the surgical

placement of a hypothetical neural prosthetic that would modulate the feed-

back control system in moments of malfunction through electrical stimulation,

similar to the deep brain stimulators already in use in clinical populations such

as Parkinson’s disease (Benabid 2003).

Medically refractory epilepsy, meaning epilepsy that is deemed unman-

ageable using medication alone (Englot & Chang 2014), is not primarily a

communication disorder but is an important clinical population for my dis-

sertation research. Most sEEG data used in research, including the data I

present, are recorded from epilepsy patients undergoing monitoring procedures

for surgical intervention (Hamberger 2007). sEEG data is a rare and valuable

resource for neuroscientific research due to its high spatial and temporal reso-

lution and ability to record from subcortical structures (Chang 2015). Much is

owed by researchers such as myself to the goodwill of consenting epilepsy pa-
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tients. Although severe epilepsy cases have the potential to a↵ect the structure

and function of the human brain (Möddel et al. 2009), and thus can impede

the generalization of many findings using this research paradigm, the sparsity

of intracranial recordings of the human brain with this caliber of spatiotem-

poral resolution means it is an unavoidable limitation. As such, noninvasive

recordings of healthy human brains form an essential complement of intracra-

nial research, as they can corroborate findings without the potential influences

of epilepsy on the brain. This is why I present data from both invasive and

noninvasive recordings in this dissertation.
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Chapter 2

EEG Results: Speaker-induced suppression
during a naturalistic reading and listening task

2.1 Preface

This chapter of my dissertation contains original research designed, col-

lected, analyzed, interpreted, and written by me. The entirety of this chapter

was adapted from either my Masters thesis (Kurte↵ 2020) or from a peer-

reviewed publication in Journal of Cognitive Neuroscience detailing the same

experiment (Kurte↵ et al. 2023). This work formed the bulk of research con-

ducted in my first several years in my combined Masters-PhD program and

underwent several major revisions between its initial presentation in my Mas-

ters thesis and its eventual publication. This chapter will most closely resem-

ble the version published in JoCN, but with the Introduction and Discussions

abridged to minimize redundancy with the Introduction and Discussion sec-

tions of this dissertation. While my Masters thesis contained a large focus

on removal of electromyographic artifact from EEG activity, this dissertation

chapter (and the corresponding JoCN article) focus primarily on the experi-

mental results of the task. Information about artifact correction is available

in Appendix A.
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Data presented in this chapter are publicly available for those wishing

to replicate my results or conduct original analyses. The data are hosted

as an OSF repository, while the code to replicate the analyses is available as

a GitHub repository.

I am grateful to my co-authors on the JoCN manuscript for their as-

sistance in all steps of preparing this chapter. My (at-the-time) undergrad-

uate research volunteers: Amanda Martinez, Nicole Currens, Jade Holder,

Cassandra Villarreal, Valerie R. Mercado, Christopher Truong, Claire Huber,

and Paranjaya Pokharel; without them, the arduous task of transcribing and

phoneme-aligning this dataset wouldn’t have been possible. I would also like

to thank lab members Maansi Desai and Ian Gri�th for their feedback during

all stages of this research as well as undergraduate mentee Tasha Anslyn for

collaborating with me on a supplemental analysis of speech errors that did

not make it into the final manuscript. PhD committee member and co-author

Rosemary A. Lester-Smith provided invaluable feedback during experimental

design and the peer review process. Fellow PhD committee member Stephanie

Ries, while not an author on this manuscript, provided helpful commentary

during data collection that steered the early direction of my analysis. Lastly,

my PhD supervisor Liberty S. Hamilton made this project possible, providing

much-needed assistance throughout every step of the research process.
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2.2 Abstract

Speaking elicits a suppressed neural response when compared with lis-

tening to others’ speech, a phenomenon known as speaker-induced suppression

(SIS). Previous research has focused on investigating SIS at constrained levels

of linguistic representation, such as the individual phoneme and word level.

Here, I present scalp EEG data from a dual speech perception and produc-

tion task where participants read sentences aloud then listened to playback of

themselves reading those sentences. Playback was separated into immediate

repetition of the previous trial and randomized repetition of a former trial to

investigate if forward modeling of responses during passive listening suppresses

the neural response. Concurrent electromyography (EMG) was recorded to

control for movement artifact during speech production. In line with previous

research, event-related potential (ERP) analyses at the sentence level demon-

strated suppression of early auditory components of the EEG for production

compared with perception. To evaluate whether linguistic abstractions (in the

form of phonological feature tuning) are suppressed during speech production

alongside lower-level acoustic information, I fit linear encoding models that

predicted scalp EEG based on phonological features, EMG activity, and task

condition. I found that phonological features were encoded similarly between

production and perception. However, this similarity was only observed when

controlling for movement by using the EMG response as an additional re-

gressor. My results suggest that SIS operates at a sensory representational

level and is dissociated from higher order cognitive and linguistic processing
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that takes place during speech perception and production. I also detail some

important considerations when analyzing EEG during continuous speech pro-

duction.

2.3 Introduction

2.3.1 Speaker-induced suppression and speech motor control

Speech production and speech perception are frequently studied sepa-

rately in research, yet the two processes have a robust, interactive theoreti-

cal link (§1.1; Skipper et al. (2017); Houde & Nagarajan (2011); Tourville &

Guenther (2011); Zheng et al. (2010); Watkins et al. (2003)). Models of the

neurobiology of speech production universally include the sensorimotor control

of speech, a mechanism by which speakers can detect errors via auditory and

somatosensory feedback and subsequently correct those errors (§1.1.1; Parrell

et al. (2019); Houde & Chang (2015); Tourville & Guenther (2011); Perkell

et al. (1997)). For the feedback control component of speech motor control,

speaker-induced suppression (SIS) is among the most-well documented neu-

ral biomarkers, in which neural responses to (errorless) self-generated sounds

are suppressed in relation to externally generated sounds (§1.2.3.1; Brumberg

& Pitt (2019); Niziolek et al. (2013); Martikainen et al. (2005); Houde et al.

(2002)).
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2.3.2 Linguistic abstraction

While SIS and other aspects of speech motor control such as the e↵er-

ence copy have previously identified robust biomarkers (§1.1.1; Behroozmand

& Larson (2011); Heinks-Maldonado et al. (2007); Martikainen et al. (2005)),

the interaction of SIS with other cognitive and linguistic processes ongoing dur-

ing speech perception and production is not well studied. It is widely accepted

that the brain uses some sort of intermediate representations when processing

language from its constituent acoustic signal (§1.2.2; Mesgarani et al. (2014);

Appelbaum (1996)), and specific representations of the perceptual response

may be deemed unnecessary during production (e.g., phonological features,

acoustic properties of the speech signal) because of more complete informa-

tion about auditory stimuli during speech production. Previous work has in-

vestigated linguistic feature representation during speech production (Cheung

et al. 2016), but this work did not establish how linguistic feature representa-

tions di↵er during perception and production, meaning the nature of feature

representation preservation during SIS is still an open question. In addition,

Cheung et al. (2016) mainly addressed changes to feature tuning in the mo-

tor cortex itself, rather than changes to tuning in sensory speech areas of the

auditory cortex. Research by another group has speculated some form of in-

variance is utilized in the e↵erence copy, which is itself a feedforward cortical

signal that is suppressed during speech production as part of SIS (Niziolek

et al. 2013). Niziolek et al. (2013) did not identify an explicit source/nature

of the speculated invariant representations present in this signal, but this pa-
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per’s observation that the e↵erence copy does not predict all variability in the

sensory feedback of speech lends itself to two hypotheses: either the e↵erence

copy itself represents an invariant motor plan (cf. the explicit outgoing motor

commands of speech), or it represents precise encoding of motor commands

that lose their precision (i.e., become invariant) in sensory cortex. The asso-

ciation between SIS’s sensitivity to subphonemic variation and the invariant

encoding of phonological features in sensory cortex is unclear. An approach

that could successfully demonstrate di↵erential encoding of phonological fea-

tures between speaking and listening could help establish the proposed form

of invariance in feedforward control of speech.

2.3.3 Forward expectations during speech perception and produc-
tion

A separate question concerns how expectations about utterance con-

tent may influence feedforward speech motor control. While speech percep-

tion does involve feedforward processing (Poeppel & Monahan 2011), forward

models present during production are much more complete due to expectations

about utterance content being internally generated during utterance planning.

Therefore, the presence of a robust forward model during speech production

represents a fundamental di↵erence between conditions where speech is sup-

pressed and where speech is not suppressed. Potentially, the feedback moni-

toring mechanisms at work during SIS could serve a role in general predictive

processing; alternatively, the mechanisms of SIS could be specific to speech

motor control and any predictability-based modulations could reflect domain-
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general prediction mechanisms exerting a top-down influence on SIS, which

is primarily theorized as a bottom-up sensory process comparing a forward

model of motoric goals with auditory/sensorimotor feedback (Niziolek et al.

2013).

2.3.4 The importance of naturalistic stimuli in EEG speech pro-
duction experiments

The last question of interest for this study is whether or not SIS, a

neurophysiological phenomenon previously studied in highly constrained “lab-

oratory speech” environments, is observable in more generalized “naturalistic

speech.” Shifting EEG studies toward language as it occurs in natural settings

compared with the heavily constrained single word or syllable-level studies of

the past facilitates generalization to clinical applications and reinforces the

interdisciplinary drive to use more ecologically valid stimuli in studies of the

neural representation of speech and language (Hamilton & Huth 2020). Studies

that expand beyond using evoked stimuli and incorporate naturalistic stimuli

(e.g., sentences) raise the ecological validity of the research while also provid-

ing a window of analysis for the feedforward and feedback processes that link

perception and production (Kearney & Guenther 2019; Houde & Nagarajan

2011; Poeppel & Monahan 2011; Casserly & Pisoni 2010).

2.3.5 Aims

In this study, I aim to investigate di↵erences in EEG responses between

sentence-level speech perception and production, as well as speech perception
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in consistent and inconsistent contexts to define the neural representations

underpinning SIS more precisely. Deviance from a motoric goal has been pre-

viously demonstrated to modulate SIS, suggesting the process takes place at a

sensory representational level. However, it is unclear whether the suppression

of sensory representations during speech production a↵ects linguistic abstrac-

tions that are generated from sensory processing. If linguistic representations

were suppressed in conjunction with SIS, I would expect to see di↵erential

phonological tuning to specific speech features (Desai et al. 2021; Khaligh-

inejad et al. 2017; Di Liberto et al. 2015). In addition, I opted to structure

my task such that participants can anticipate when playback of auditory re-

sponses is inconsistent with the preceding speaking trial. This allowed me

to determine if there is a link between predictive processing in passive lis-

tening and the consistency or inconsistency of feedback (Lester-Smith et al.

2020). To investigate these questions, I designed an experiment that used

identical acoustic stimuli in separate speech perception and production condi-

tions then compared the di↵erence in event-related potentials (ERPs) as well

as in tuning of phonological features across conditions. I hypothesized that,

although speech production will be suppressed relative to perception in this

study, phonological feature tuning would remain stable between modalities

of speech. In addition, I expected a similar trend in inconsistent perceptual

stimuli, such that phonological feature representations will remain stable but

reduced in amplitude in comparison to consistent perceptual stimuli. If re-

sponses to consistent versus inconsistent playback show a similar pattern of
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suppression to that observed during speaking versus listening, we may con-

clude that these processes involve similar underlying computations. On the

other hand, if we see di↵erences in these patterns, this suggests that SIS is

computationally distinct from other phenomena that involve forward model-

ing or expectations of upcoming speech. In addition, observing di↵erences in

linguistic abstraction of acoustics into phonological features can help contex-

tualize the phenomenon in relation to other cognitive and linguistic processes

operating during speech perception and production.

2.4 Methods

2.4.1 Subject details

Twenty-one participants (11 women, age 24.4±3.9) were recruited from

The University of Texas at Austin. This is in line with sample sizes of recent

EEG studies of speech production (Ries et al. 2021; Goregliad Fjaellingsdal

et al. 2020; Zhao & Rudzicz 2015). All participants were native speakers of

English with typical hearing as assessed through pure-tone audiometry and a

speech-in-noise hearing test (QuickSIN, Interacoustics). Participants provided

written consent for participation in the study and were compensated at a rate

of $15/hr with an average session length of 2 hr (1 hr for setup, 1 hr for

recording EEG). One participant was excluded because of a recording error,

leaving 20 participants in the final analysis. All experimental procedures were

approved by the institutional review board at The University of Texas at

Austin.
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2.4.2 Perception-production task

The task was designed using a dual perception-production block paradigm,

where trials consisted of a dyad of sentence production followed by sentence

perception. In each trial, participants overtly read a sentence and then lis-

tened to a recording of themselves reading the produced sentence. Perception

trials were divided into blocks of consistent and inconsistent stimuli. Consis-

tent stimuli consisted of immediate playback of the production trial, whereas

inconsistent stimuli consisted of a randomly selected production trial from the

previous block. Consistent and inconsistent playback trials were presented in a

block paradigm to avoid eliciting an “oddball” response, a commonly observed

ERP component that elicits a response to randomly deviant perceptual stimuli

(Barry et al. 2000). A schematic is provided in Figure 2.1. The generation

of perception trials from the production aspect of the task allowed stimulus

acoustics to be functionally identical across conditions.

Sentences were taken from the MultiCHannel Articulatory (MOCHA)

database, a corpus of 460 sentences that include a wide distribution of phonemes

and phonological processes typically found in spoken English (Wrench 1999).

These sentences have been used previously in intracranial studies of speech

production (Chartier et al. 2018). A subset of 50 sentences (100 for the first

two participants) from MOCHA were chosen at random for the stimuli in the

present study; however, before random selection, I manually removed 61 sen-

tences for either containing o↵ensive semantic content or being di�cult for an

average reader to produce to reduce extraneous cognitive e↵ects and error pro-
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duction, respectively. I changed the sentence set from 100 to 50 sentences after

the first two participants because of concerns about participant fatigue dur-

ing the task. Participants completed six blocks of the task for 300 perception

and 300 production trials per participant (400 for the first two participants).

Sentences had a median length of 2.9 sec. A broadband click tone was played

in between trials as an additional cue to assess the e↵ect of EMG correction

on low-level auditory responses (see Appendix A).

Stimuli were presented in a dimly lit sound-attenuated booth on an

Apple iPad Air 2 using custom interactive software developed in Swift (Ap-

ple XCode Version 9.4.1). Auditory stimuli were presented at a comfortable

listening level via foam-tipped insert earbuds (3M, E-A-Rtone Gold 10⌦). Vi-

sual stimuli were presented in a white font on a black background after a 1000

millisecond fixation cross to minimize visual artifact in the EEG signal (Figure

2.1). Accurate stimulus presentation timing was controlled by synchronizing

events to the refresh rate of the screen. The iPad was placed on a table over

the participants’ lap so they could advance trials during the task with minimal

arm movement. Participants were instructed to complete the task at a com-

fortable pace and were familiarized with the task before recording began. Trial

information, including onset and o↵set of each trial, transcriptions of produced

and heard sentences, trial type, trial number, and block number were collected

by an automatically generated log file to assist in data processing.
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Figure 2.1: Dual perception-production task and EEG data collection
schematic.
(A) Schematic of trial types in the task. The participant first reads a sentence
aloud (purple) then hears playback of the same audio (yellow, consistent play-
back condition) or audio from a di↵erent random trial (light blue, inconsistent
playback).
(B) Schematic of auxiliary EMG electrode placement on orbicularis oris (blue)
and masseter (red).
(C) Visualization of all signals recorded during task, including produced audio
(speech), perceived audio (clicks and speech), and EOG and EMG channels.
Only eight EEG channels are visualized here, but 64 were recorded and used
in analysis. Vertical lines denote the onset of a production (purple) or percep-
tion (green) trial (i.e., the acoustic onset of the first phoneme of the sentence).
Blinks are observed as deflections in the EOG channel; muscle activation dur-
ing production is notable as high activity in the EMG channel.
(D, E) Outline of trial procedure for consistent (yellow) and inconsistent (light
blue) blocks.

2.4.3 EEG and EMG acquisition

Sixty-four-channel scalp EEG and audio were recorded continuously via

BrainVision actiChamp amplifier (Brain Products) with active electrodes at

25 kHz. A high sampling rate was used to synchronize task audio and EEG,

which were recorded using the same amplifier. Conductive gel (SuperVisc,

EASYCAP) was applied to the scalp at each electrode, and impedance at

each electrode was kept below 15 k⌦ throughout the recording. Audio signals

from both the insert earphones (presented audio, 3M E-A-Rtone Gold 10⌦

earphones) and microphone (produced audio, Audio Technica U853rw cardiod

condenser microphone) were captured as additional EEG auxiliary channels

(also at 25 kHz) and were aligned with neural data via a StimTrak processor
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(Brain Products). Vertical electrooculography (vEOG) was captured via aux-

iliary electrodes above and below the left eye in line with the pupil. Auxiliary

electrodes were also used to capture facial EMG activity (Figure 2.1); these

electrodes were placed on the orbicularis oris and mandible in the majority of

participants (n = 11), but on other muscles important to articulation (mas-

seter (n = 6), submental triangle (n = 2)) in several participants (Stepp 2012;

Van Eijden et al. 1993; Rastatter & De Jarnette 1984). Multiple placements

were utilized because of issues with electrode adherence caused by participant

facial hair. All placements were trialed on a participant who consented to

additional time during setup. A reference electrode for all auxiliary electrodes

was placed on the left earlobe. Auxiliary EMG placement was not required for

preprocessing but provided validation that EMG artifact was removed during

preprocessing. EMG activity associated with the onset of articulation, which

caused the largest artifacts in the temporal window of interest for ERP analysis

of speech production, was automatically detected and epoched from auxiliary

EMG channel activity. All recorded signals timed according to stimulus onsets

are visualized in Figure 2.1. The first two participants did not have auxiliary

electrode placement because of unavailability of recording hardware, so EMG

activity was corrected based on EEG channels only.

2.4.4 Data preprocessing

All EEG processing was performed o✏ine using custom Python scripts

and functions from the mne software package (Gramfort et al. 2014). EEG,
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EOG, and EMG data were downsampled from 25 kHz to 128 Hz before anal-

ysis. EEG data were referenced to the linked mastoid electrodes (the average

of the TP9 and TP10 channels) and notch filtered at 60 Hz to remove line

noise. For one participant (OP17), one reference electrode was a bad channel

and was interpolated before re-referencing. The data were next filtered from

1–30 Hz (Hamming window, 0.0194 passband ripple with 53-dB stopband at-

tenuation, 6 dB/octave). Bad channels and segments were manually rejected,

then Independent Component Analysis (ICA) was performed to correct for

EOG and electrocardiographic artifact with the number of components equal

to the number of good channels. ICA components related to vEOG, hEOG,

and electrocardiographic artifact were manually identified and removed via

scalp topography and epoching component activity to vEOG activity (ob-

tained via mne.create eog epochs()). The selected ICA components were

next removed from the unfiltered data. After ICA, data were filtered at 0.16

Hz and corrected for EMG artifact via blind source separation algorithm based

on canonical correlation analysis (CCA; De Clercq et al. (2006)), a technique

that has been previously demonstrated to correct for EMG artifact in speech

production EEG tasks (Ries et al. 2021; Riès et al. 2013; Vos et al. 2010).

In line with these studies, CCA was performed in two passes: first, a 30-

second window to remove tonic muscle activity; second, a 2-second window

to remove rapid bursts of EMG associated with speech production. CCA was

performed using the Automatic Artifact Removal plugin for eeglab (Gómez-

Herrero 2007). Validity of CCA artifact correction for the removal of EMG
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from continuous speech production data is not discussed further in this chapter;

however, an additional verification of the technique can be found in Appendix

A. After CCA and before analysis, bad channels were interpolated and data

were bandpass filtered between 1 and 30 Hz.

2.4.5 Event-related potential (ERP) analysis

Accurate timing information for words, phonemes, and sentences was

generated to allow epoching of EEG data to multiple levels of linguistic repre-

sentation. Log files generated by the task application were used to identify the

timing of individual sentences in the task, which were then made temporally

precise using a modified version of the Penn Phonetics Forced Aligner (Yuan

& Liberman 2008), which automatically generated Praat TextGrids (Boersma

2002). Automatically generated TextGrids were checked for accuracy at the

sentence, word, and phoneme level by the undergraduate research volunteers

who are authors on the JoCN manuscript that this chapter is adapted from

(A.M., N.C., J.H., C.V., V.M., C.T., C.H., and P.P). I supervised the tran-

scription process and checked the final TextGrids for accuracy before generat-

ing event files used in the analyses. Event files containing start and stop times

for each phoneme, word, and sentence, as well as information about trial type

(perception vs. production; consistent vs. inconsistent playback), were created

using the log files and TextGrids. A second set of event files corresponding to

the intertrial click sound were generated via a match filter process where the

audio signal of the click was convolved with the EEG audio signal to find exact
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timing matches (Turin 1960). To examine the di↵erences between perception

and production at the sentence level, sentence-level event files were used to

epoch the neural response between �1.5 seconds and +3 seconds relative to

sentence onset, which I quantified as the acoustic onset of the first phoneme

of the sentence (Ozker et al. 2022). Epochs ±10 SDs from the within-subject

mean were rejected.

2.4.6 Linear mixed-e↵ects (LME) modeling

Linear mixed-e↵ects (LME) models were created and assessed using

the lmertest package (Kuznetsova et al. 2017) in R to determine statistical

di↵erences between di↵erent task conditions within relevant time windows,

specifically the N1 (80–150 msec) and P2 (150–250 msec). The peak ampli-

tudes and latencies of these windows, as well as the peak-to-peak amplitude of

the N1 and P2 components, were used as response variables. Latency was cal-

culated as the time at which the largest peak within a time window of interest

occurred. LME models were specified using Equation 2.1:

y = X� + Zu+ ✏ (2.1)

where � represents fixed-e↵ects parameters, u represents random e↵ects, and ✏

represents residual error. X and Z are matrices of shape (n⇤p), where n is the

number of observations of each parameter and p is the value of parameter at

observation n. In all models, the fixed e↵ect was the response variable of inter-

est (i.e., N1 & P2 amplitude & latency; peak-to-peak amplitude) and subject
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was used as a random e↵ect. F tests were calculated using Kenward–Roger

approximation with n degrees of freedom specified (Kenward & Roger 1997).

2.4.7 Multivariate temporal receptive field (mTRF) modeling

Linear encoding models (also referred to as spectrotemporal or mul-

tivariate temporal receptive field models in previous literature) were fit to

describe the selectivity of the EEG responses to phonological features corre-

sponding to place and manner of articulation (Desai et al. 2021; Hamilton

et al. 2018; Crosse et al. 2016; Di Liberto et al. 2015; Mesgarani et al. 2014).

This model takes the form of Equation 2.2:

ŷn(t) =
X

f

⌧=0.5X

⌧=�0.3

w(f, ⌧)S(f, t� ⌧) + ✏ (2.2)

where ŷn(t) represents the estimated EEG signal for electrode n at time t.

The stimulus matrix S consists of behavioral information regarding features

(f) for each time point t�⌧ , where ⌧ is the time delay between the stimulus and

neural activity in seconds. Features included combinations of binary features

for perception, production, consistent playback, and inconsistent playback tri-

als, as well as continuous, normalized EMG activity recorded from auxiliary

electrodes, and binary features for the presence of phonological features at

each time point (as in Desai et al. (2021); Hamilton et al. (2018); Mesgarani

et al. (2014)). The “full” model stimulus matrix contained 14 phonological

features as well as four binary features encoding trial information (perception,

production, consistent playback, inconsistent playback) and normalized EMG
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activity from facial electrodes for 19 features. These phonological features

for place and manner of articulation were identical to those used in previous

work (Desai et al. 2021; Hamilton et al. 2021; Mesgarani et al. 2014) and

included sonorant, obstruent, voiced, nasal, syllabic, fricative, plosive, back,

low, front, high, labial, coronal, and dorsal. Phonemes were coded in a bi-

nary matrix where a 1 indicated the onset of a phoneme’s articulation via

timing information obtained from the TextGrids. I fit separate models to

predict the EEG response in each channel using time delays of �0.3 seconds

to +0.5 seconds, relative to the acoustic onset of the phoneme. This delay

range encompassed the temporal integration times to similar responses found

in previous research (Hamilton et al. 2018) but with an added negative delay

to encompass potential pre-articulatory neural activity (Chartier et al. 2018).

Data were split 80-20 into training and validation sets. To avoid overfitting,

the data were segmented along sentence boundaries, such that the training and

validation sets would not contain information from the same sentence. These

segments were then randomly combined into the 80/20 training/validation

sets. Weights for each feature and time delay w(f, ⌧) were fit using ridge re-

gression on the training set and a regularization parameter chosen by 10 boot-

strap iterations, fitting on subsets of the training set. The ridge parameter

was selected at the value that provided the highest average correlation per-

formance across all bootstraps. Ridge parameters between 10�5 and 105 were

tested in 20 logarithmically scaled intervals. Model performance was assessed

using correlations between the EEG response predicted by the model and the
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true EEG response. Significance of these correlations was obtained through a

bootstrap procedure with 100 iterations in which the training data were shuf-

fled in chunks to remove the relationship between the stimulus and response

but preserve temporal correlations within the EEG signal. Visual inspection

of the data revealed two participants (OP4 and OP17) for whom responses

showed no discernible receptive field structure even after greatly expanding

the range of ridge parameters, motivating their exclusion from the analysis.

To investigate the relationship between encoding of phonological features dur-

ing perception and production, a “task-specific” model was fit (Figures 2.3;

2.5), which contained three sets of phonological features: those that occurred

exclusively during production trials, those that occurred exclusively during

perception trials, and a combined perception-plus-production set of phonolog-

ical features identical to those included in the “full” model described above.

After fitting this model, I calculated a feature-by-feature correlation for the

production-specific and perception-specific feature weights (e.g., correlation of

fricative-production with fricative-perception) to investigate how representa-

tions of phonological features change between modes of speech (Figure 2.5). I

also used the production-specific and perception-specific model weights to fit

separate predictions of the held-out validation set EEG activity, which were

then averaged relative to sentence onset to facilitate comparison to the ERP

analysis (Figure 2.5).
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2.5 Results

Topographic inspection of sentence-level ERP activity revealed a fron-

tocentral ROI of nine channels that elicited the strongest response to sentence

onset during speech perception and production (F1, Fz, F2, FC1, FCz, FC2,

C1, Cz, and C2). This ROI is used in the ERP results, but linear encoding

models were fit on all channels for all participants.

2.5.1 Speaker-induced suppression observed at the sentence level

After verifying the integrity of the dataset, I wished to understand

whether and how responses to continuous speech di↵er for production ver-

sus perception and for the consistent and inconsistent playback conditions.

Sentence-level ERPs for both perception and production were epoched to

the acoustic onset of sentence articulation (the first phoneme in the trial

sentence). These ERPs demonstrated a relative suppression of EEG activ-

ity in production trials compared with perception trials (Figure 2.2). The

N1 and P2 components are present at the sentence level in both perception

and production conditions but reduced in amplitude for the production tri-

als. I fit LME models (Equation 2.1) comparing perception and production in

windows of interest (windowed amplitude ⇠ Condition + (1|Subject) and

windowed latency ⇠ Condition + (1|Subject)). I report the estimated

marginal mean (EMM ) and standard error of the contrasts between perception

and production responses here. I found significantly lower amplitudes for N1

(EMM perception�production = �2.31±0.15 µV ; p < .001) and significantly higher
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amplitudes for P2 (EMM perception�production = 1.72±0.15 µV ; p < .001) during

perception compared with production. This was also in line with increased

peak-to-peak amplitude (EMM perception�production = 3.96 ± 0.15 µV ; p < .001)

in perception compared with production. In addition, N1 latency was de-

creased in production compared with perception (EMM perception�production =

1.64 ± 0.47 msec; p < .001), and similar results were seen for P2 latency

(EMM perception�production = 2.75 ± 0.66 msec; p < .001). Suppression during

speech production relative to perception in this task highlights di↵erences in

processing internally and externally generated speech.

Next, di↵erences in consistent and inconsistent playback trials were

assessed to evaluate the presence or absence of a suppression similar to the

one observed between perception and production. Although di↵erences were

significant between perception and production trials, the di↵erences between

consistent and inconsistent speech perception were less pronounced: LME

modeling (Window ⇠ Condition + (1|Subject)) did not reveal a significant

di↵erence in N100 (EMM consistent�inconsistent = 0.31 ± 0.20 µV ; p = .12) and

P200 (EMM consistent�inconsistent = �0.20± 0.22 µV ; p = .37) amplitudes across

this contrast. However, peak-to-peak amplitude (EMM consistent�inconsistent =

�0.52 ± 0.24 µV ; p = .03) and N100 latency (EMM consistent�inconsistent =

1.50±0.66 msec; p = .02) di↵ered significantly between consistent and inconsis-

tent trials, with an earlier response to inconsistent compared with consistent

playback. P2 latency did not di↵er significantly (EMM consistent�inconsistent =

0.18±0.91 msec; p = .84). Because consistent and inconsistent perception tri-
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als were split into blocks during the task, an oddball response was not elicited

for the inconsistent stimuli. To further investigate the significance of peak-to-

peak amplitude and N1 latency between consistent and inconsistent percep-

tual stimuli, a series of Wilcoxon signed-ranks tests with Benjamini-Yekutieli

correction (Benjamini & Yekutieli 2001) comparing N1-P2 peak-to-peak am-

plitude and N1 latency on a within-subject basis were performed. These sig-

nificance tests revealed only three individual participants that demonstrated a

significant suppression between consistent and inconsistent speech perception

(OP1 p = .02; OP7 p < .001; OP21 p = .0002), and only two participants

with a significant di↵erence in N1 latencies (OP1 p = .004; OP19 p = .04).

This within-subject analysis suggests the significance of peak-to-peak ampli-

tude and N1 latency observed in the LME results is caused by outlier partici-

pants rather than a generalizable e↵ect. Overall, di↵erences within consistent

and inconsistent perception trials were less pronounced than the di↵erences

between perception and production trials. These minor di↵erences between

expected and unexpected speech perception suggest that SIS is not funda-

mentally linked to general forward modeling of speech production. In other

words, feedforward processing of speech perception and feedforward processing

of speech production reflect di↵erent neural mechanisms.
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Figure 2.2: ERPs to sentence onset demonstrate suppression of N1-
P2 during speech production.
Speech production (purple) is suppressed relative to perception (green), but no
such di↵erence is observable for consistent (yellow) versus inconsistent (light
blue) speech perception.
(A) Grand average ERPs and N1/P2-windowed ERPs comparing speech pro-
duction and speech perception (top) and consistent and inconsistent speech
perception (bottom).
(B) LME model EMMs for the four experimental conditions’ amplitudes (top)
and latencies (bottom). Shaded area represents standard error.

2.5.2 Suppression of phonological feature tuning during speech pro-
duction

While the ERP results provide insight into the timing and magnitude

of di↵erences in responses during perception and production, they do not pro-
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vide information regarding any potential di↵erences in responses to specific

speech features or content. Furthermore, ERP analyses are constrained by the

need to average many trials that are time-locked to a particular event (Luck

2014). Thus, ERP analyses may not be as sensitive to uncovering di↵erences

outside of the onset of the sentence, or for specific phonological features within

continuous speech. To address this limitation, I performed additional analyses

where I fit mTRF models for continuous production and perception (Equa-

tion 2.2). These analyses are powerful in that they allow for investigation

of continuous, natural speech without the need for trial averaging. Although

I could perform a phoneme-by-phoneme ERP analysis to show task-related

di↵erences across the sentence, such an analysis would su↵er from an inabil-

ity to account for coarticulation or other temporal correlations of activity.

The mTRF model regression weights are calculated for multiple time delays

simultaneously, allowing the model to account for activity in response to com-

binations of features across time (Theunissen et al. 2000). They also allow

me to further probe specific di↵erences (or lack thereof) in tuning across my

di↵erent task conditions.

Model performance was evaluated by calculating the linear correlation

coe�cients (r) between the EEG response predicted by the model and the ac-

tual response for held out data not used to train the model. I also probed the

importance of individual features on model performance by ablating specific

features from the stimulus matrix S and observing the change in correlation

coe�cients between ablated and full models. Similar variance partitioning
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methods have been used to uncover the unique variance explained by partic-

ular features (Hamilton et al. 2021; de Heer et al. 2017). For example, if a

model that omitted normalized EMG predicted the neural response less ac-

curately, the interpretation is that EMG contains important information for

accurately modeling EEG activity. For each task-related feature in the “full”

model (14 phonological + 4 task features; Figure 2.3), I fit a separate model

omitting that feature. Lastly, one model had two additional sets of phonologi-

cal features (i.e., 14 phonological features during production + 14 phonological

features during perception + 14 phonological features in either condition + 4

task features; Figure 2.3). These were split by modality to observe if phono-

logical feature tuning changed between perception and production. I call this

model the “task-specific” encoding model, which is in comparison to the “iden-

tical” encoding model in which phonological feature tuning is assumed to be

the same across all conditions, with only a baseline change fit by the two

condition features (perception and production). The EMM s of the contrast in

correlation coe�cients between models were evaluated via LME modeling with

subject and channel location as random e↵ects (r ⇠ Model + (1|Subject)

+ (1|Channel)). Separating phonological tuning by the modality of speech

(i.e., perception vs. production) had a significant e↵ect on model performance

(EMM identical�separate r = �0.014 ± 0.003; p < .001), such that separating

phonological feature tuning during production from phonological feature tun-

ing during perception improved the model’s ability to predict the held-out

neural response (Figure 2.3). This result, which was contrary to my initial
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hypothesis, suggested that phonological feature encoding di↵ers during speech

perception and production. However, because of the influence of EMG artifact

during speech production, speech perception in this task is a combination of

sensory and motor responses, whereas speech perception in this task is purely

sensory, which may explain the di↵erence in the models presented in Figure

2.3.

-0.3 0 0.5

dorsal
coronal

labial
high
front
low

back
plosive

fricative
syllabic

nasal
voiced

obstruent
sonorant

OP14 AF8
(task-specific)

dorsal
coronal

labial
high
front
low

back
plosive

fricative
syllabic

nasal
voiced

obstruent
sonorant

dorsal
coronal

labial
high
front
low

back
plosive

fricative
syllabic

nasal
voiced

obstruent
sonorant

perception
production
consistent

inconsistent
emg

A

0.0 0.1 0.2 0.3 0.4 0.5
Model correlation

identical feature encoding

0.0

0.1

0.2

0.3

0.4

0.5

M
od

el
 c

or
re

la
tio

n
ta

sk
-s

pe
ci

fic
 fe

at
ur

e 
en

co
di

ng

B

-0.3 0 0.5

dorsal
coronal

labial
high
front
low

back
plosive

fricative
syllabic

nasal
voiced

obstruent
sonorant

perception
production
consistent

inconsistent
emg

OP14 AF8
(identical)

C

C
om

bi
ne

d
P

er
ce

pt
io

n
on

ly
P

ro
du

ct
io

n
on

ly

AF8

OP3 OP8 OP12 OP16

OP5 OP9 OP13 OP18

OP6 OP10 OP14 OP19

OP7 OP11 OP15 OP21

w
+max0 w-maxw

Figure 2.3: Separating phonological feature encoding by modality of
speech improves model performance.
(A) Temporal receptive field for an individual electrode with stimulus charac-
teristics divided by task condition (i.e., perception vs. production).
(B) Scatter plot of channel-by-channel correlation coe�cients between two
compared models. Color and markers are used to denote individual partici-
pants. Diagonal black line represents unity (equal model performance).
(C) Temporal receptive field for an individual electrode with stimulus charac-
teristics identical across task condition.

Although I utilized methods to correct for EMG artifact that have been
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previously demonstrated in the literature to be successful (Ries et al. 2021;

Chen et al. 2019; Vos et al. 2010), there is no definitive way to rule out resid-

ual EMG given the lack of ground truth in the sources that contribute to the

electroencephalogram. As a result, I further explored the influence of EMG ar-

tifact on model performance by fitting mTRFs that included normalized EMG

activity recorded from auxiliary facial electrodes in tandem with the EEG as

a regressor. Models that include or exclude the auxiliary EMG but are other-

wise identical in their stimulus matrices were compared in an ablation-based

approach to explore the contribution of specific features to model performance

(Ivanova et al. 2021a). Linear correlation coe�cients were compared using an

LME model identical to the model used for comparing the “identical” versus

“task-specific” models described above. The inclusion or exclusion of nor-

malized EMG in the stimulus matrix significantly a↵ected model performance

regardless of whether phonological features were task specific (p < .001) or

identical (p < .001). Including information about normal- ized EMG activity

recorded from auxiliary facial electrodes improved model performance (Figure

2.4) as shown by the greater number of channels below the unity line. On an

individual participant basis, all but two participants (OP6 and OP16) showed

a significant di↵erence in model performance across the inclusion or omission

of normalized EMG activity as a stimulus feature as assessed by Wilcoxon

signed-ranks test. When comparing the relative di↵erence between “identi-

cal” and “task-specific” models (Figure 2.3) in the presence or absence of an

EMG regressor, models including an EMG regressor showed less of a di↵erence
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in performance between methods of phonological feature encoding, suggesting

that residual EMG decreases the stability of phonological feature tuning across

modalities of speech (Figure 2.4). A verification of artifact removal in the con-

text of the ERP results reported above is provided in Appendix A.

Although the linear encoding model results occur on a phoneme-by-

phoneme timescale (cf. the sentence-level ERPs presented in Figure 2.2), the

EEG data used to fit the models were collected during a task that elicited

SIS. Thus, I sought to identify any reduction in phonological feature response

between production-specific and perception-specific feature weights in an e↵ort

to link the linear encoding model results to the ERP analysis presented earlier

in this chapter. Feature-by-feature, I calculated the correlation coe�cient (r)

of the production-specific and perception-specific weights of the task-specific

mTRF (Figure 2.3) and observed a strong negative correlation between the

production and perception-specific weights (Figure 2.5).
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Figure 2.4: Including EMG as an encoded feature in linear models
greatly improves their performance, as well as the stability of phono-
logical feature encoding between perception and production.
(A) Individual electrodes’ correlation coe�cients with held-out neural response
within models that do contain an EMG regressor (x axis) and those that do
not (y axis), for models that separate phonological feature tuning by task
modality (blue) and models that do not (red). Diagonal black line represents
unity. Shaded area is the convex hull of points within each group to show
overall trends.
(B) Individual electrodes’ correlation coe�cients with held-out neural response
within models that di↵erentially encode phonological features according to
modality of speech (y axis) and those that do not (x axis), in the presence (red)
or absence (blue) of information about normalized EMG activity recorded from
auxiliary facial electrodes. Diagonal black line represents unity. Shaded area
same as (A). When EMG was regressed, more points lie along the unity line,
indicating similar phonological feature tuning and that EMG may be captured
in the di↵erent phonological features when it is not available as a regressor.

Trial-specific stimulus features were also ablated to assess their con-

tribution to model performance. Omitting trial modality (i.e., whether a
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phoneme was produced or perceived) did not significantly a↵ect the mTRF

model’s ability to predict the held-out neural response (p = .65). Similarly,

ablating information about whether the perception trials were consistent or

inconsistent with their preceding production trials did not a↵ect model per-

formance (p = .56). If the EMG regressor is removed in conjunction with

trial-specific features, the di↵erences in model performance when trial modal-

ity is included or ablated are less profound but still nonsignificant (p = .23).

When ablating playback consistency, no changes are observed in significance

between inclusion (p = .56) and omission (p = .54) of an EMG regressor, which

is expected considering this contrast is constrained to perception trials where

EMG associated with articulation is absent from the response. The ablation of

consistency contrast not a↵ecting model performance is in line with the ERP

results presented above (Figure 2.2). However, ablating trial modality (i.e.,

perception vs. production) not a↵ecting model performance is incongruent

with the ERP results, for which a stark contrast between perception and pro-

duction were observed. The di↵erence in time frame between the ERP analysis

(sentence level) and the linear encoding model analysis (phoneme level) may

explain the di↵erence between the ERP and mTRF results. In other words,

sentence-level processing of speech perception and production may involve dif-

ferent neural mechanisms, but at an individual phoneme level, the mechanisms

are shared between perception and production. Alternatively, the incorpora-

tion of the EMG regressor may be delineating perception and production in the

model, making explicit information about trial modality, e↵ectively marking
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the explicit inclusion of trial type in the stimulus matrix redundant. This ex-

planation is supported by the observation that omission of an EMG regressor

substantially impacted model performance.
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Figure 2.5: Production-specific and perception-specific phonological
feature weights are strongly negatively correlated with each other,
suggesting a suppressive relationship.
(A) Violin plot showing the distribution of channel-by-channel, feature-by-
feature correlation coe�cients between phonological features specific to per-
ception and phonological features specific to production, separated by individ-
ual participant. Thick line in violin interior represents range of Quartiles 1–3.
Density of plot (violin width) scaled by individual participant.
(B) Temporal receptive fields for three individual electrodes. Phonological fea-
ture weights taken from task-specific model separated into perception-specific
(left) and production-specific (right) receptive fields. Center grayscale column
represents the correlation of each row of weights between the two receptive
fields.
(C) Predicted EEG activity for the held-out validation set as predicted by the
perception-specific (green), production-specific (purple), or combined (gray)
phonological feature weights. Electrodes OP14 F3 (predicted vs. actual EEG
r = .53; p < .001) and OP10 FT7 (predicted vs. actual EEG r = .42; p < .001)
exhibit similar model performance between task-specific and identical phono-
logical feature encoding models (i.e., lie along unity line of Figure 2.3), whereas
electrode OP7 F7 (predicted vs. actual EEG rtask-specific = 0.37; ridentical = 0.24;
p < .001) exhibits diverging model performance between models. Overall, pre-
dicted EEG based on the production-specific weights was lower in amplitude
than predicted EEG based on the combined or perception-specific weights. All
mTRFs presented in this figure are from the task-specific model that included
an EMG regressor.

Taken together, the mTRF results suggest that linguistic abstractions

remain invariant during speaking and listening. Similar encoding of phono-

logical features between these modes of speech after EMG regression suggests

the amplitude reduction corresponding to SIS is not explicable by a di↵erence

in linguistic abstraction, constraining it to endogenic sensorimotor processes.

However, a feature-by-feature correlation shows an inverse relationship be-

tween the encoding of phonological features during speaking and listening,
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demonstrating a suppressive relationship between speaking and listening can

be observed on an individual phoneme timescale throughout sentences that

exhibit SIS at sentence onset. Methodologically, the mTRF results show that

regressing EMG activity recorded from auxiliary electrodes during the task is

an informative characteristic of the stimulus in the context of modeling neural

responses to speech. Including information about trial type (perception vs.

production, consistent vs. inconsistent playback) was less informative when

EMG was included as a regressor, potentially the result of fundamental dif-

ferences in expected residual EMG between articulating speech and passively

listening. EMG regression also reduces phonological feature tuning changes

across modality of speech, suggesting residual EMG artifact in the postpro-

cessed signal is responsible for changes in phonological feature tuning, as well

as motivating auxiliary EMG recordings as a safeguard against residual EMG

in the postprocessed response.

2.6 Conclusion

The results presented in this chapter demonstrate a di↵erence in EEG

responses to perceiving and producing naturalistic stimuli. At the sentence

level, a suppression of early auditory components N1 and P2 was observed

in speech production relative to perception. These findings are in line with

previous literature on SIS and auditory processing more generally, which have

identified that internally produced stimuli generate less of a change in neural

activity than externally produced stimuli. This study sought to replicate the
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phenomenon of SIS in a more naturalistic setting, as many studies of SIS use

low-level acoustic stimuli such as pure tones (Martikainen et al. 2005) and

single vowels (Niziolek et al. 2013; Heinks-Maldonado et al. 2006; Houde et al.

2002), whereas many neurolinguistic studies now use more naturalistic stimuli

such as podcasts (Goldstein et al. 2022; Huth et al. 2016), audiobooks (Her↵

et al. 2015), and movie trailers (Desai et al. 2021) in an e↵ort to better capture

how speech and language are used in daily life (Hamilton & Huth 2020). I was

able to demonstrate SIS at the sentence level, which is comparatively much

more naturalistic than the lower-level characteristics of speech used in previous

studies of SIS. In contrast with the suppression observed between perception

and production trials, di↵erences between EEG responses to consistent and

inconsistent perceptual trials were minor.

To investigate whether linguistic abstraction into phonological features

persists during SIS, in neural responses to these two modes of speech, I fit linear

encoding models describing neural activity as a function of di↵erent stimulus

features. These features allowed us to test di↵erent hypotheses about changes

in phonological tuning at the individual feature level versus overall baseline

changes during perception and production. Performance of these models were

evaluated by how well the mTRF weights correlated with held-out EEG re-

sponse. Di↵erentially encoding phonological features during perception and

production in the stimulus matrix yielded higher model performance; how-

ever, residual EMG artifact may be driving performance improvements in the

di↵erential phonological features model, considering the inclusion of normal-
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ized EMG recorded from facial electrodes substantially improved model per-

formance. As EMG activity is expected to disproportionately a↵ect speech

production because of articulatory movement, residual EMG that is unac-

counted for with an additional regressor may be providing the model with a

clear contrast between the perception and production conditions that is spu-

riously encoded in the separation of phonological features across modes of

speech. Accordingly, the inclusion of the EMG regressor reduces the vari-

ance in phonological feature encoding between perception and production by

accounting for uncorrected EMG artifact in a separate regressor. Thus, I

conclude that phonological feature encoding is a shared representation dur-

ing speaking and listening. Despite similar ability (after regressing EMG) to

predict held-out EEG as models that do not separate phonological features

into whether they occurred during perception or production, models that do

separate phonological features show a strong negative correlation between task-

specific phonological features (Figure 2.5).

The ERP and mTRF analyses presented in this chapter extend our un-

derstanding of SIS by scaling the phenomenon into a more naturalistic contex

and exploring the interaction of SIS and higher-order linguistic abstractions

that take place during speech perception and production. This research hopes

to illuminate di↵erences in electrophysiological responses to perception and

production and motivate future study of naturalistic speech production with

noninvasive EEG.
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Chapter 3

sEEG Results: Processing of auditory
feedback in perisylvian and insular cortex

3.1 Preface

This chapter of my dissertation contains original research designed, col-

lected, analyzed, interpreted, and written by me. The entirety of this chapter

was adapted from a journal article that is currently under peer review. A

preprint is available on bioRxiv (Kurte↵ et al. 2024). Data for this chapter are

not publicly available because they could compromise research participant pri-

vacy and consent. You may contact my doctoral advisor to request access by

emailing liberty.hamilton@austin.utexas.edu. The accompanying code, how-

ever, is publicly available as a GitHub repository.

I am grateful to my co-authors on the submitted article for their as-

sistance in all steps in preparation of the manuscript and this chapter. The

clinical teams at Dell Children’s Medical Center (Elizabeth C. Tyler-Kabara,

Dave Clarke), Texas Children’s Hospital (Howard L. Weiner, Anne E. Ander-

son, Andrew Watrous), and Dell Seton Medical Center (Robert J. Buchanan,

Pradeep N. Modur) made collection of these data possible, while Saman As-

ghar and Alyssa M. Field in the Hamilton Lab helped with data collection
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and preprocessing. I am also grateful to lab members Maansi Desai and Elise

Rickert for their assistance in data collection and their feedback on the project

as it developed. My PhD supervisor Liberty S. Hamilton provided assistance

with every step of the project.

Lastly, I would like to thank the patient participants at our three record-

ing sites (Dell Children’s Medical Center, Texas Children’s Hospital, Dell Seton

Medical Center) for volunteering time during their arduous hospital stay to

participate in this research. Listening to your own voice isn’t very fun, and

I imagine having epilepsy surgery isn’t much fun either, so I am incredibly

grateful for the opportunity to do this research.

3.2 Abstract

When we speak, we not only make movements with our mouth, lips,

and tongue, but we also hear the sound of our own voice. Thus, speech pro-

duction in the brain involves not only controlling the movements we make,

but also auditory and sensory feedback. Auditory responses are typically sup-

pressed during speech production compared to perception, but how this man-

ifests across space and time is unclear. Here I recorded intracranial EEG in

seventeen pediatric, adolescent, and adult patients with medication-resistant

epilepsy who performed a reading/listening task to investigate how other au-

ditory responses are modulated during speech production. I identified onset

and sustained responses to speech in bilateral auditory cortex, with a selec-

tive suppression of onset responses during speech production. Onset responses
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provide a temporal landmark during speech perception that is redundant with

forward prediction during speech production. Phonological feature tuning in

these “onset suppression” electrodes remained stable between perception and

production. Notably, the posterior insula responded at sentence onset for

both perception and production, suggesting a role in multisensory integration

during feedback control.

3.3 Introduction

A key component of speaking is the integration of ongoing sensory infor-

mation from the auditory, tactile, and proprioceptive domains (Hickok 2014;

Tourville et al. 2008). When we read a sentence out loud, our brain must con-

vert visual information into a motor program for moving our articulators (lips,

jaw, tongue, larynx) to create sounds. The brain then processes these sounds as

they are uttered, so the talker can hear if they have made a mistake. Auditory

information is processed di↵erently during speaking compared to listening (Co-

gan et al. 2014; Creutzfeldt et al. 1989; Houde et al. 2002; Nourski et al. 2021;

Towle et al. 2008). A prime example is speaker-induced suppression (SIS), a

phenomenon in which self-generated speech generates a lower amplitude neural

response than externally generated speech (§1.2.3.1; Behroozmand & Larson

(2011); Martikainen et al. (2005); Flinker et al. (2010)). SIS and related phe-

nomena are components of the speech motor control system, the purpose of

which is to ensure ongoing sensory feedback is in line with feedforward expec-

tations generated prior to articulation (Guenther 2016; Houde & Nagarajan
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2011; Tourville & Guenther 2011). This link is established by studies that

correlate the extent of cortical suppression with the accuracy of the utterance:

both speech errors and subphonemic changes in utterance acoustics can result

in decreased cortical suppression, indicative of a feedback control system ready

to adjust the motor program in real time (Niziolek et al. 2013; Ozker et al.

2022). While feedback control has primarily been studied using noninvasive

techniques with a lower signal-to-noise ratio (e.g., EEG, MEG; (Chang 2015;

Houde et al. 2002; Okada et al. 2018)), intracranial recordings allow for more

precise investigation of this process (Chang 2015; Hamilton 2024; Mercier et al.

2022; Lachaux et al. 2012). This can potentially illuminate the spatiotempo-

ral specificity of feedback suppression mechanisms like SIS. In addition, we

can investigate how speech production a↵ects other aspects of the perceptual

system, such as linguistic abstraction and neural response timing.

3.3.1 Organization of speech cortex during listening and speaking

Transformation of low-level acoustics into some form of intermediate

linguistic representation is a necessary component of speech perception (Ap-

pelbaum 1996). In several studies, this abstraction is organized according to

place and manner of articulation, motivated by linguistic feature theory. Place

of articulation describes the location of constriction in the vocal tract (e.g., a

bilabial /b/ sound is produced by closing the lips). Manner of articulation,

on the other hand, describes the degree of constriction and airflow through

the vocal tract. Mesgarani and colleagues used electrocorticography (ECoG)
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to observe tuning of electrode populations within the superior temporal gyrus

(STG) that preferentially responded to specific classes of phonological features

(namely manner of speech) during passive listening (Mesgarani et al. 2014).

For example, the same intracranial electrode might respond selectively to plo-

sive phonemes such as /b/, /d/, /g/, /p/, /t/, and /k/, while not responding

to fricatives such as /f/, /v/, /s/, /S/. In more recent work, the same level

of representation was observed at the single neuron level (Lakretz et al. 2021;

Leonard et al. 2023). The same group that identified STG electrodes tuned

to specific classes of phonological features later expanded on this result us-

ing a speech production task to demonstrate feature tuning changes during

speech production in the motor cortex (Cheung et al. 2016). Notably, they

observed that motor cortex was organized according to place of articulation

during speech production, as would be expected from somatotopic representa-

tions (Bouchard et al. 2013), but organized according to manner of articulation

during passive listening. However, this manuscript did not report on responses

in STG during speech production, nor was a direct comparison of phonological

tuning made between perception and production.

A more recent insight about how the auditory system is organized comes

from research on temporal response profiles in the STG (Hamilton et al. 2018).

The STG contains two such profiles: first, an “onset” response region local-

ized to posterior STG with high temporal modulation selectivity (Hullett et al.

2016) that transiently responds to the acoustic onset of a stimulus. These on-

set responses are useful for segmenting continuous acoustic information into
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discrete linguistic units, such as phrases and sentences. Second, a “sustained”

response region localized to middle STG with a longer temporal integration

window that does not show the same strongly adapting responses following sen-

tence onset. Onset and sustained response profiles are a globally organizing

feature of speech-responsive cortex, and responses to all phonological features

are seen across both (Hamilton et al. 2018). If responses to phonological infor-

mation can be modified by the acoustic context of a sound, it is possible they

could also be modulated by feedback suppression during speech production.

Other top-down cognitive processes can a↵ect speech perception as well, such

as expectations about upcoming stimuli evidenced in both speech production

(Goregliad Fjaellingsdal et al. 2020; Lester-Smith et al. 2020; Scheerer & Jones

2014) and speech perception (Astheimer & Sanders 2011; Bendixen et al. 2014;

Caucheteux et al. 2023). In general, auditory stimuli that are consistent with

the listener’s expectations generate less of a response than inconsistent stim-

uli (Chao et al. 2018; Forseth et al. 2020). While consistency e↵ects are also

a component of the motor system (Gonzalez Castro et al. 2014; Shadmehr

& Krakauer 2008), the link between speaker-induced suppression and more

general top-down expectation is not well established.

3.3.2 Speaker-induced suppression in noninvasive recordings

Recent research from my group (presented in Chapter 2) used scalp

EEG recordings to demonstrate that responses to continuous sentences are

suppressed during production compared to perception of those same sentences
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while phonological tuning remains unchanged (Kurte↵ et al. 2023). However,

such conclusions may be tempered by the low spatial resolution of scalp record-

ings, motivating the use of high-resolution intracranial stereo EEG (sEEG)

recordings. When we plan to speak, the motor e↵erence copy contains ex-

pectations about upcoming auditory feedback and may contain information

about temporal/linguistic landmarks in that feedback (Levelt 1993; Niziolek

et al. 2013; Schneider et al. 2014). Onset responses, which encode the temporal

landmarks of speech, may then be suppressed as a redundant processing com-

ponent during speech production. This is corroborated by scalp EEG/MEG

research showing that SIS occurs primarily within the N1/M1 components.

That is, the N1 and M1 neural responses are suppressed during speaking as

compared to playback. The N1/M1 component is an early-onset neural re-

sponse that is observed at acoustic edges with high temporal modulation (Luck

2014), making these components share characteristics with onset responses ob-

served using invasive recordings.

3.3.3 The role of the insula in speech perception and production

The use of sEEG as a recording methodology a↵ords an additional

advantage to the current study: the ability to record from deeper structures

in the cortex. One such structure is the insula, a multifunctional region that

is theorized to be involved in sensory, motor, and cognitive aspects of speech

(Kurth et al. 2010). Recent work using sEEG reported the insula to be more

active for self-generated speech when compared to externally generated speech,
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an opposite trend to the cortical suppression of self-generated speech observed

in auditory cortex (Woolnough et al. 2019). The insula is di�cult to record

from using several popular neuroimaging techniques due to its placement deep

in the Sylvian fissure (Chang 2015; Remedios et al. 2009). In speech, the insula

conventionally plays a role in pre-articulatory motor coordination (Dronkers

1996). Because of the proximity of the insula to the temporal plane and

hippocampus, insular coverage is rather common in sEEG epilepsy monitoring

cases (Nguyen et al. 2022). I aim to expand upon the functional role of the

insula in speech perception and production by directly comparing auditory

feedback processing and phonological feature encoding during speaking and

listening while recording from the region in high resolution.

3.3.4 Aims

To address how cortical suppression during speech production interacts

with documented organizational phenomena during speech perception such

as linguistic abstraction and onset/sustained response profiles, I used high-

resolution sEEG recordings of neural activity from electrodes implanted in the

cortex as part of surgical epilepsy monitoring (Guenot et al. 2001). These

participants completed a dual speech production-perception task where they

first read sentences aloud, then passively listened to playback of their reading

to identify potential changes in local field potential recorded by the implanted

electrodes. My first goal was to identify if previously identified onset and sus-

tained response profiles in auditory cortex (Hamilton et al. 2018) were also
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present during speech production. Additionally, I varied the playback con-

dition between a consistent playback of the preceding production trial and a

randomly selected playback inconsistent with the preceding trial to assess the

spatial and temporal similarity of a more general perceptual expectancy e↵ect

with feedback suppression during speech production. Lastly, I investigated

how linguistic feature tuning changes at individual electrodes during speech

production vs. perception and how this is modulated by expectation. My

results have implications for understanding important auditory-motor interac-

tions during natural human communication.

3.4 Methods

3.4.1 Subject details

17 individuals (sex: 9F; age: 16.6±6.4, range 8-37; race/ethnicity: 8

Hispanic/Latino, 6 White, 1 Asian, 2 multi-racial) undergoing intracranial

monitoring of seizure activity via sEEG for medically intractable epilepsy were

recruited from three hospitals: Dell Children’s Medical Center in Austin, Texas

(n = 13); Texas Children’s Hospital in Houston (n = 3), Texas; and Dell

Seton Medical Center in Austin, Texas (n = 1). Demographic and relevant

clinical information is provided in Table D.2. Participants (and for minors,

their guardians) received informed consent and provided written consent for

participation in the study. All experimental procedures were approved by the

Institutional Review Board at the University of Texas at Austin.
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3.4.2 Neural data acquisition

Intracranial sEEG and ECoG data from a total of 2044 electrodes across

subjects were recorded continuously via the epilepsy monitoring teams using

a Natus Quantum headbox (Natus Medical Incorporated, San Carlos, CA,

USA). At Texas Children’s Hospital, sEEG depths (AdTech Spencer Probe

Depth electrodes, 5mm spacing, 0.86mm diameter, 4-16 contacts per device),

strip electrodes (AdTech) and grids (AdTech custom order, 5mm spacing, 8x8

contacts per device) were implanted in the brain by the neurosurgeon in brain

areas that are determined via clinical need. At Dell Children’s Medical Cen-

ter and Dell Seton Medical Center, sEEG depths (PMT Depthalon, 0.8mm

diameter, 3.5mm spacing, 4-16 contacts per device) were used. A TDT S-

Box splitter was used at Dell Children’s Medical Center to connect the data

stream to a TDT PZ5 amplifier, which then recorded the local field potential

from the sEEG electrodes onto a research computer running TDT Synapse

via a TDT RZ2 digital signal processor (Tucker Davis Technologies, Alachua,

FL, USA). Speaker (perceived; GENELEC 1029A powered monitor speakers)

and microphone (produced; Audio Technica U853A cardioid condenser micro-

phone connected to an RDL STM-2 preamp) audio were also recorded via

RZ2 at 22 kHZ to circumvent downsampling of audio by the clinical record-

ing system. At the other two recording locations, use of a dedicated research

recording system was not possible due to clinical constraints; instead, the au-

ditory stimuli from the iPad were simultaneously played to the participant

through speakers and recorded directly on the clinical system using an audio
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splitter cable, allowing synchronization of stimulus events with neural activ-

ity. Because audio recorded on the clinical system could only be collected at 3

kHz, simultaneous high-resolution audio was recorded for both speaking and

playback using an external microphone (Sennheiser MD 42) and a second split-

ter cable from the iPad both plugged into a MOTU M4 USB audio interface

(MOTU, Cambridge, MA, USA) plugged into the research computer running

Audacity recording software. After the recording session, a match filter was

used to synchronize high-resolution audio from the external recording system

to the neural data recorded on the clinical system (Turin 1960). Intracranial

data were recorded at 3 kHz and downsampled to 512 Hz before analysis for

all sites.

3.4.3 Data preprocessing

Data were preprocessed o✏ine using a combination of customMATLAB

scripts and custom Python scripts built o↵ the mne software package (Gram-

fort et al. 2014). First, data were notch filtered at 60/120/180 Hz to remove

line noise, then channels were manually inspected and rejected. Bad channels

were identified through visible noise or excessive artifact in the signal. Next, a

common average reference was applied across all non-bad channels. The high

gamma analytic amplitude response (Lachaux et al. 2012), which has been

shown to strongly correlate with speech (Kunii et al. 2013) and serves as a

proxy for multi-unit neuronal firing (Ray & Maunsell 2011), was extracted via

Hilbert transform (8 bands, log spaced, Gaussian kernel, 70-150 Hz). Lastly,
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the 8-band Hilbert transform response was Z-scored relative to the mean ac-

tivity of the individual recording block. All preprocessing and subsequent

analyses were performed on a research computer with the following specifica-

tions: Ubuntu 20.04, AMD Ryzen 7 3700X, 64GB DDR4 RAM, Nvidia RTX

2060.

3.4.4 Electrode localization

Electrodes’ locations were registered in the three-dimensional Montreal

Neurological Institute (MNI) coordinate space (Evans et al. 1993). Electrodes

were localized through coregistration of an individual subject’s T1 MRI scan

with their CT scan using the Python package img pipe (Hamilton et al. 2017).

Three-dimensional reconstructions of the pial surface were created using an in-

dividual subject’s T1 MRI scan in Freesurfer and anatomical regions of inter-

est for each electrode were labeled using the Destrieux parcellation atlas (Dale

et al. 1999; Destrieux et al. 2010). These reconstructions were then inflated

for better visualization of intra-Sylvian structures such as the insula and Hes-

chl’s gyrus via Freesurfer. To visualize electrodes on the new inflated mesh,

electrodes were projected to the surface vertices of the inflated mesh, which

maintained the same number of vertices as the default pial reconstruction.

To preserve electrode location using inflated visualization, each electrode was

projected to a mesh of its individual Freesurfer region of interest (ROI) before

projection to inflated space. Additionally, any depth electrodes greater than 4

millimeters from the cortical surface (n = 691) were not visualized on inflated
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surfaces due to a previously identified spatial fallo↵ in high gamma frequency

bands for electrodes greater than 4 millimeters apart from each other (Muller

et al. 2016). Electrodes greater than 4 millimeters from the cortical surface,

while excluded from visualization, were included in analyses if they contained

a robust response (p < 0.05 for bootstrap procedure, r � 0.1 for TRF mod-

eling) to any task stimuli. To visualize electrodes across subjects, electrodes

were nonlinearly warped to the cvs avg35 inMNI152 template reconstruction

(Dale et al. 1999) using procedures detailed in Hamilton et al. (2017). While

nonlinear warping ensures individual electrodes remain in the same anatomical

region of interest as they were in native space, it does not preserve the geome-

try of individual devices (depth electrodes or grids). For inflated visualization

in warped space, an identical ROI-mesh-to-inflated-surface projection method

as described above was utilized, but the ROI and inflated meshes were gen-

erated from the template brain instead. Anatomical regions of interest were

always derived from the electrodes in the original participant’s native space.

3.4.5 Overt reading and playback task

The task used is identical to the one described in Chapter 2. The

task was designed using a dual perception-production block paradigm, where

trials consisted of a dyad of sentence production followed by sentence per-

ception. Both perception and production trials were preceded by a fixation

cross and broadband click tone (Figure 3.2A). Production trials consisted of

participants overtly reading a sentence, then the trial dyad was completed by
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participants listening to a recording of themselves reading that produced sen-

tence. Playback of this recording was divided into two blocks of consistent and

inconsistent perceptual stimuli: consistent playback matched the immediately

preceding production trial, while inconsistent playback stimuli were instead

randomly selected from the previous block’s production trials. The generation

of perception trials from the production aspect of the task allowed stimulus

acoustics to be functionally identical across conditions.

Sentences were taken from the MultiCHannel Articulatory (MOCHA)

database, a corpus of 460 sentences that include a wide distribution of phonemes

and phonological processes typically found in spoken English (Wrench 1999).

A subset of 100 sentences from MOCHA were chosen at random for the stim-

uli in the present study; however, before random selection, 61 sentences were

manually removed for either containing o↵ensive semantic content or being dif-

ficult for an average reader to produce to reduce extraneous cognitive e↵ects

and error production, respectively.

Unlike in Chapter 2, a modified version of the task optimized for par-

ticipants with a lower reading level was created so that pediatric participants

could perform the task as close to errorless as possible. This version took

the randomly selected MOCHA sentences from the main task and shortened

the length and utilized higher-frequency vocabulary that still encompassed

the range of phonemes and phonological processes found in the initial dataset.

Seven of the seventeen participants (TC1, TC3, DC10, DC12, DC13, DC16,

DC17) completed the easy-reading version of the task. Participants completed
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the task in blocks of 20 sentences (25 sentences for the easy-reading version)

produced and subsequently perceived for a total of 40 (50) trials per block.

Participants produced (and listened to subsequent playback of) an average of

142±61 trials. A broadband click tone was played in between trials.

Stimuli were presented in the participant’s hospital room on Apple iPad

Air 2 using custom interactive software developed in Swift (Apple). Auditory

stimuli were presented at a comfortable listening level via external speakers.

Insert earbuds and/or other methods of sound attenuation (e.g., soundproof-

ing) were not possible given the clinical constraints of the participant popula-

tion. Visual stimuli were presented in a white font on a black background after

a 1000 millisecond fixation cross. Accurate stimulus presentation timing was

controlled by synchronizing events to the refresh rate of the screen. The iPad

was placed on an overbed table and trials were advanced by the researcher us-

ing a Bluetooth keyboard. Participants were instructed to complete the task

at a comfortable pace and were familiarized with the task before recording

began. Timing information was collected by an automatically generated log

file to assist in data processing.

As mentioned above, electrodes >4 millimeters from the cortical surface

were automatically excluded from visualization. However, electrodes identified

as outside the brain or its pial surface via manual inspection of the subject’s

native imaging were excluded from all analyses. Electrodes in a ventricle or in

a lesion were excluded using the same method. Adjacent electrodes that dis-

played a similar response profile to outside-brain electrodes were also excluded;
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conversely, electrodes on the lateral end of a device that displayed a markedly

di↵erent response profile than medially adjacent electrodes were determined to

be outside the brain and thus excluded. As an additional measure of manual

artifact rejection, channels that displayed high trial-to-trial variability were

excluded from analysis. Lastly, while data were common average referenced in

analysis, the data were re-preprocessed using a bipolar reference and any elec-

trodes with a markedly di↵erent response when the referencing method was

changed were excluded from analysis. All electrodes rejected through manual

inspection of imaging were discussed and agreed upon by me and two of my

coauthors (Alyssa M. Field and Liberty S. Hamilton).

3.4.5.1 Speech motor control task

A subset of six participants (TC6, DC7, DC10, DC13, DC16, DC17)

completed a supplementary task with the goal of obtaining nonspeech oral

motor movements to use as a control comparison for any electrodes that were

production-selective to determine if they were speech-specific or not. Stimuli

for this task consisted of written instructions accompanying a “go” signal on

the iPad screen to prompt the participant to follow the instructions. The nine

possible instructions, presented in a random order, were: “smile,” “pu↵ your

cheeks,” “open and close your mouth,” “stick your tongue out,” “move your

tongue left and right,” “tongue up (tongue to nose),” “tongue down (tongue to

chin),” and “say ‘aaaa’,” “say ‘oo-ee-oo-ee’.” These instructions were chosen

as a subset of movements evaluated during typical oral mechanism exams
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conducted by speech-language pathologists (St. Louis & Ruscello 1981). Each

movement was repeated 3 times.

For the nonspeech oral motor control task, except for the last two in-

structions (say “aa” or “oo-ee-oo-ee”), oral motor movements did not include

an acoustic component. Thus, instead of being epoched to the acoustic onset

of the trial like the primary task, responses were instead epoched to the dis-

play of the instruction text before the “go” signal, which was accompanied by

the same broadband click tone as the main task. A match filter, identical to

the one described above used to align high-resolution task audio with clinical

recordings, identified the timing of these clicks and assisted in generation of

the event files.

3.4.6 Event-related potential (ERP) analysis

I annotated accurate timing information for words, phonemes, and sen-

tences to epoch data to di↵ering levels of linguistic representation. A modified

version of the Penn Phonetics Forced Aligner (Yuan & Liberman 2008) was

used to automatically generate Praat TextGrids (Boersma 2002) using a tran-

script generated by the iPad log file. I checked the automatically generated

TextGrids for accuracy myself, unlike in Chapter 2 where I had the assistance

of undergraduate research volunteers. Event files containing start and stop

times for each phoneme, word, and sentence, as well as information about

trial type (perception vs. production), were created using the iPad log file

and accuracy-checked TextGrids. These event files were then used to average
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Z-scored high gamma across trials relative to sentence onset. For both produc-

tion and perception, the onset of the sentence was treated as the acoustic onset

of the first phoneme in the sentence as identified from the spectrogram. Re-

sponses were epoched between -0.5 and +2.0 seconds relative to sentence onset,

with the negative window of interest intending to capture any pre-articulatory

activity related to speech production (Chartier et al. 2018).

Electrode significance was determined by bootstrap t-test with 1000

iterations comparing activity during the stimulus to randomly selected inter-

stimulus-interval activity; bootstrapped significance for perception and pro-

duction activity were calculated separately as to identify electrodes that may

be selectively responsive to either perceptual or production stimuli. A schematic

is provided in 3.1. For the bootstrap procedure, I averaged activity 5-550 mil-

liseconds after sentence onset and compared that to average activity during a

silent 400-600 milliseconds after the inter-trial click as a control (Figure 3.1A).

The control time window was selected as to not include potential evoked re-

sponses from the click sound but still be in the 1000 millisecond window be-

tween the click sound and stimulus presentation. A similar procedure was

used to calculate significance for the consistent-inconsistent playback contrast

(same time windows used). Bootstrap significance for the speech motor con-

trol task used activity 500-1000 milliseconds after the click sound played when

text instructions were displayed to avoid including evoked responses to the click

sound itself in the procedure (Figure 3.1B). Because there were no inter-trial

click sounds in the speech motor control task with the click instead marking
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the display of instructions, activity -500 to 0 milliseconds prior to the click

sound was used as the control interval.
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Figure 3.1: Schematic of time windows for bootstrap t-tests.
(A) Schematic for bootstrapping during the speaking and listening task. Colors
of X-axis values indicate time (in seconds) relative to the click sound (pink),
production trial (purple), or perception trial (green). Rows represent infor-
mation seen, heard, and spoken by the participant over the course of a trial.
Shaded gray areas indicate time windows of high gamma activity compared
during the bootstrap procedure. The perception trial waveform is split into
two colors to indicate that the same windows of activity are used to calculate
bootstrap significance for the consistent/inconsistent playback manipulation.
(B) Schematic for bootstrapping during the speech motor control task. Dif-
ferent time windows are used for the bootstrap procedure due to the lack
of inter-trial click sounds in the speech motor control task. The speech mo-
tor window is calculated relative to the click sound to capture any potential
preparatory motor activity before the go signal (green circle).
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In addition to suppression, I was interested to see how onset responses

change between speaking and listening. To quantify the presence of an onset

response at a particular electrode, I looked in the first 300 milliseconds of re-

sponse relative to sentence onset for activity >1.5 SD above the mean response

for the electrode’s activity epoched to sentence onset. The time window of the

onset response was defined as the range of contiguous samples of activity >1.5

SD above the mean, with the peak amplitude of the onset response being the

greatest activity within the onset window. Onset latency was calculated as the

maximum rate of change (di↵erential) in the rising slope of the onset response.

While I required an onset response to begin in the first 300 milliseconds of ac-

tivity after sentence onset, I did not specify a time window in which one must

end. Onset responses were quantified separately for the average production

response and average perception response of each electrode. Electrodes that

exhibited an onset response during speech perception and production were

classified as “dual onset,” while electrodes that exhibited an onset response

during speech perception only were classified as “onset suppression.”

3.4.7 Convex non-negative matrix factorization (cNMF)

To uncover patterns of evoked activity for speech production, speech

perception, and auditory (click) perception that were consistent across par-

ticipants, I employed convex non-negative matrix factorization (cNMF; Ding

et al. (2010)). This is an unsupervised clustering technique that reveals un-

derlying statistical structure of datasets and has previously been used by my
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research group to discover profiles of neural response without explicitly spec-

ifying the feature represented by the response nor the anatomical location of

the electrodes (Hamilton et al. 2018, 2021). I use a similar approach to these

papers, summarized by the following equations:

X ⇡ X̂ = FG
> (3.1)

Xp,n ⇡ 1

t

\n=2X

n=�1

H�p,n = FG
> (3.2)

where X is high gamma time series of shape (n samples, p electrodes) averaged

across t epochs, and F = XW , where W is a matrix of shape (p electrodes,

k clusters) and represents the cluster weights applied to the neural time se-

ries, and G is a matrix of shape (p electrodes, k clusters) and represents the

weighting of an individual electrode within a cluster. cNMF was applied using

this method to a concatenation of Z-scored evoked responses across subjects

to sentences. Epochs consisted of a temporal range of -1 to +2 seconds rel-

ative to sentence onset. Epochs t were averaged within their response type

then concatenated; possible response types were production onset, perception

(playback) onset, and inter-trial click onset. This method of performing cNMF

on averaged epochs across di↵erent types of trials has been utilized in prior

intracranial studies of speech (Leonard et al. 2019). In a supplemental analy-

sis, I concatenated additional epoch averages corresponding to presentation of

126



visual cues (e.g., text prior to reading, fixation cross) and a subdivision of play-

back onsets into consistent and inconsistent playback, but these manipulations

did not significantly alter the clusters observed. I concatenated ERPs based on

the response to production onset, perception (playback) onset, and click onset.

I also incorporated information about expected vs. unexpected playback as

well as presentation of the visual cue in separate supplemental analyses, but

these did not significantly alter the clusters observed. The final concatena-

tion resulted in a matrix X of n ⇤ 3 samples (production epochs, perception

epochs, click epochs) by p electrodes. The number of basis functions to include

was determined by two primary factors: first, the identification of a threshold

such that adding additional clusters resulted in diminishing increases in per-

cent variance explained; second, identifying a point at which adding additional

clusters resulted in redundant average responses across clusters. I calculated

percent variance as the coe�cient of determination (R2; Wright (1921)). This

threshold was reached at k=9 clusters and 86% of the variance in the data

explained. The average response for each of the k=9 clusters is provided in

Figure C.1.

Inclusion in the cNMF analysis was determined using the bootstrap t-

test described in 3.4.6. Electrodes above the significance threshold (p > 0.05)

for both perception and production were excluded from cNMF clustering if the

electrode also had a low correlation (r < 0.1) during the mTRF modeling pro-

cedure (§3.4.10). In other words: electrodes without a significant perception

or production response to sentence onset nor a moderate performance during
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mTRF model fitting were excluded from cNMF.

3.4.8 Suppression index (SI )

Within the sentence-onset epochs, a further window of interest was

defined to calculate the degree of suppression between task conditions. The

window of interest for onset responses was defined as 0 to 1 seconds after sen-

tence onset. Window sizes were determined by previous research on onset and

sustained responses (Hamilton et al. 2018) as well as preliminary results of the

unsupervised clustering technique shown in Figure 3.4. The suppression index

(SI), or degree of suppression during speaking as compared to listening, was

quantified at each electrode as the ratio of high gamma activity between two

separate conditions averaged across all epochs for the task condition occurring

at that electrode. This is formalized as:

SI =
H�L �H�S

H�L +H�S
(3.3)

where SI of electrode n is the di↵erence of high gamma activity during speak-

ing (H�S) subtracted from high gamma activity during listening (H�L) divided

by the sum of high gamma activity during speaking and listening in the first

1 second after the acoustic onset of the sentence. A positive SI means that

activity was greater during listening as compared to speaking, whereas a neg-

ative SI means activity was greater during speaking compared to listening.

An SI of zero would reflect no di↵erence between conditions.
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3.4.9 Linear mixed-e↵ects (LME) modeling

Linear mixed-e↵ects (LME) models were fit using the package lmertest

(Kuznetsova et al. 2017) in R at several points in analysis to quantify trends

in the data. The approach bears similarities to the LME models fit in Chapter

2, but there are di↵erences in their construction as the high spatial resolution

of sEEG a↵ords additional research questions which may be investigated with

the technique. As with EEG, I chose LME as my statistical testing framework

due to its ability to regress across within- and between-subject variability,

facilitating generalization across subjects. The general equation takes the

form, identical to Equation 2.1:

y = X� + Zu+ ✏ (3.4)

where � represents fixed-e↵ects parameters, u represents random e↵ects, and ✏

error. Contrast significance for all LMEs described below is calculated using F

tests with Kenward-Roger approximation with n degrees of freedom specified,

where n is the length of matrix X (Kenward & Roger 1997).

The first LME reported in this chapter is used to quantify di↵erences

between suppression observed in onset and sustained responses. Suppression

index (see §3.4.8) was used as the response variable with window of interest

(two-way categorical: onset or sustained) and ROI as fixed e↵ects and sub-

ject as a random e↵ect (in R: si ⇠ window + roi + (1|subject)). SI was

calculated separately in the onset and sustained windows for this analysis,
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unlike the SI formulation described in §3.4.8: onset SI was calculated be-

tween 0 and 750 milliseconds and sustained SI was calculated between 1000

and 1750 milliseconds after sentence onset. I chose these windows based on

the average duration of the onset response across all electrodes and chose to

make the sustained time window non-contiguous with the onset window to

prevent extraneous activity from longer onset responses erroneously being fac-

tored as sustained activity in the model. I report the contrast in estimated

marginal mean (EMM ) SI of the two windows. I then used post-hoc Wilcoxon

signed-rank tests with Benjamini-Yekutieli correction to calculate significant

di↵erences in SI between the onset and sustained responses within each ROI

(Benjamini & Yekutieli 2001).

The second LME I report in this paper is used to quantify response

latency within three regions of interest: primary auditory (HG, PT), non-

primary auditory (STG, STS), and insular auditory (posterior + inferior in-

sula). Peak latency values for the onset response (§3.4.6) are used as the re-

sponse variable with ROI (three-way categorical) as a fixed e↵ect and subject

as a random e↵ect (in R: peak latency ⇠ roi + (1|subject)). I report

the EMM peak latencies of the three ROIs as well as their contrasts.

The third LME reported in this paper is used to quantify the mTRF

(see §3.4.10) ablation analysis, a causal probing technique where specific stim-

ulus features are added or removed from an encoding model and di↵erences

in performance are recorded (Ivanova et al. 2021a). For this LME model,

the linear correlation coe�cients (r) between dH� and H� are used as the re-
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sponse variable with model features (i.e., full vs. ablated) as a fixed e↵ect and

subject and channel as a random e↵ect (in R: r ⇠ model + (1|subject) +

(1|channel)). I chose to include channel as a random e↵ect here as I did

not have a specific hypothesis for anatomical di↵erences in ablated model per-

formance; additionally, including channel as a fixed e↵ect instead would have

resulted in an uninterpretable amount of pairwise comparisons and introduce

multiple comparisons bias into the analysis. I report the EMM r values of

the four models (base, ablate perception/production contrast, ablate consis-

tent/inconsistent contrast, task-specific phonological feature encoding) as well

as their contrasts.

3.4.10 Multivariate temporal receptive field (mTRF) modeling

Similar to Chapter 2, multivariate temporal receptive field (mTRF)

models were fit to describe the selectivity of the high gamma response to

di↵erent sets of stimulus features (Aertsen & Johannesma 1981; Crosse et al.

2016; Di Liberto et al. 2015; Theunissen et al. 2000). These models take the

form of the equation below:

ŷn(t) =
X

f

⌧=0.5X

⌧=�0.3

w(f, ⌧)S(f, t� ⌧) + ✏ (3.5)

This equation is identical to Equation 2.2, but I will summarize it again here

for the reader’s convenience. ŷnt represents the estimated high gamma sig-

nal at electrode n at time t. The stimulus matrix S consists of behavioral

information regarding features (f) for each time point t � ⌧ , where ⌧ is the
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time delay between the stimulus and neural activity. I fit separate models to

predict the high gamma response in each channel using time delays of -0.3

sec to 0.5 sec. This delay range encompasses the temporal integration times

to similar responses found in previous research (Hamilton et al. 2018), but

with an added negative delay to encompass potential pre-articulatory neural

activity (Chartier et al. 2018; Kurte↵ et al. 2023). Data were split 80-20 into

training and validation sets. To avoid overfitting, the data were segmented

along sentence boundaries, such that the training and validation sets would

not contain information from the same sentence. These segments were then

randomly combined into the 80/20 training/validation sets. Weights for each

feature and time delay w(f, ⌧) were fit using ridge regression on the training

set and a regularization parameter chosen by 10 bootstrap iterations. The

ridge parameter was selected at the value that provided the highest average

correlation performance across all bootstraps. Ridge parameters between 102

and 108 were tested in 20 logarithmically scaled intervals. Model performance

was assessed using correlations between the high gamma response predicted

by the model and the true high gamma response. Significance of these corre-

lations was obtained through a bootstrap t-test procedure with 100 iterations

in which the training data were shu✏ed in chunks to remove the relationship

between the stimulus and response.
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3.5 Results

3.5.1 Onset responses are selectively suppressed during speech pro-
duction

To examine potential di↵erences in neural processing during speech

production and perception, I acquired data from 17 pediatric, adolescent, and

adult participants (9F, age 16.6 ± 6.4, range 8 to 37 years; Table D.2) surgi-

cally implanted with intracranial stereo-electroencephalography (sEEG) depth

electrodes and pial electrocorticography (ECoG) grids for epilepsy monitoring.

These patients performed a task where they read aloud naturalistic sentence

stimuli then passively listened to playback of their reading (Figure 3.2A). For

all analyses, I extracted the high gamma analytic amplitude of the local field

potentials (Lachaux et al. 2012), which has been shown to correlate with single-

and multi-unit neuronal firing (Ray & Maunsell 2011) and tracks both acous-

tic and phonological characteristics of speech (Mesgarani et al. 2014; Oganian

et al. 2023). Based on prior work from my advisor, I expected to observe strong

onset and sustained responses during sentence playback (Hamilton et al. 2018,

2021), as well as sensorimotor responses during the production portions of the

task that would reflect articulatory control (Bouchard & Chang 2014; Chartier

et al. 2018). Additionally, my task design allowed me to investigate the role

of auditory-motor feedback during speech production by comparing neural re-

sponses to auditory feedback in real time to passive listening to an acoustically

matched playback of each trial.

I recorded from a total of 2044 sEEG depth electrodes implanted in
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perisylvian cortex and insula. This included coverage of speech responsive

areas of the lateral superior temporal gyrus, but also within the depths of the

superior temporal sulcus (STS), primary auditory cortex, and surrounding

regions of the temporal plane. Within- and across-subject visualizations of

electrode coverage are available as supplemental figures (Figures C.2, C.3). To

examine di↵erences between speech perception and production on individual

electrodes, I plotted event-related high gamma responses for speech perception

and production trials relative to the beginning of the acoustic onset of the

sentence. I identified 144 electrodes with significant responses to perceptual

stimuli, 350 electrodes with significant responses to production stimuli, and 110

electrodes with significant responses to both perceptual and production stimuli

(Figure 3.2B; bootstrap t-test, p < 0.05). I quantified individual electrodes’

selectivity to speech production or perception by calculating a suppression

index (SI, Equation 3.3). An SI > 0 reflects higher activity during listening

compared to speaking, and SI < 0 reflects higher activity during speaking

compared to listening (Figure 3.2C).

Single-electrode responses can be visualized on an interactive 3D brain

at https://hamiltonlabut.github.io/kurteff2024/1. I observed single

electrodes with selective responses to speech perception in bilateral Heschl’s

gyrus and STG (Figure 3.2D). 51.4% of electrodes in STG (n = 70) and 100%

of electrodes in Heschl’s gyrus (n = 13) responded significantly to speech per-

1In the event this URL is taken o✏ine in the future, please contact me and I will provide
you with access.
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ception stimuli. Response profiles of electrodes in this region consisted of a

mixture of transient onset responses and lower-amplitude sustained responses

during passive listening, consistent with previous research (Hamilton et al.

2018, 2021). In primary and non-primary auditory cortex, onset responses were

notably absent during speech production, while sustained responses remained

relatively un-suppressed (Estimated marginal meanonset�sustained SI = 0.153;

p < .001). Electrodes in primary sensorimotor cortex were typically more

production-selective, in line with conventional localization of sensorimotor con-

trol of speech (Bouchard et al. 2013; Guenther 2016; Penfield & Roberts 1959).

This pattern of responses demonstrates selective suppression of onset responses

during speech production in primary and secondary auditory regions of the hu-

man brain. This result supports prior research that posits onset responses play

a role in temporal parcellation of speech, a process unnecessary during speech

production due to the speaker’s knowledge of upcoming auditory information

(Houde & Nagarajan 2011; Tourville & Guenther 2011).
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Figure 3.2: Auditory onset responses are suppressed during speech
production.
(A) Schematic of reading and listening task. Participants read a sentence
aloud (purple) then passively listened to playback of themselves reading the
sentence (green). Pink spikes in the beginning and middle of the audio wave-
form indicate inter-trial click tones, used as a cue and an auditory control.
(B) Single-electrode plots showing di↵erent profiles of response selectivity
across the cortex. Color gradient represents normalized SI values. A more
positive SI indicates an electrode is more responsive to speech perception stim-
uli (e1) while a more negative SI means an electrode is more responsive to
production stimuli (e3). e2 and e3 are examples of response profiles described
in subsequent figures (Figures 3.3 and 3.4, respectively). Example electrodes’
SI are indicated on the gradient. Subplot titles reflect the participant ID and
electrode name from the clinical montage.
(C) Whole-brain and single-electrode visualizations of perception and produc-
tion selectivity (SI). Electrodes are plotted on a template brain with an
inflated cortical surface; dark gray indicates sulci while light gray indicates
gyri. Single-electrode plots of high-gamma activity demonstrate suppression
of onset response relative to the acoustic onset of the sentence (vertical black
line).
(D) Box plot of suppression index during onset (blue) and sustained (orange)
time windows separated by anatomical region of interest in primary and non-
primary auditory cortex. Brackets indicate significance (* = p < 0.05; ** =
p < 0.01).
Abbreviations: HG: Heschl’s gyrus; PT: planum temporale; STG: superior
temporal gyrus; STS: superior temporal sulcus; MTG: middle temporal gyrus;
CS: central sulcus; Post. Ins.: posterior insula.

3.5.2 The posterior insula uniquely exhibits onset responses to
speaking and listening

The ability of sEEG to obtain high-resolution recordings of human in-

sula is a unique strength, as other intracranial approaches such as ECoG grids

and electrocortical stimulation cannot be applied to the insula without prior
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dissection of the Sylvian fissure, an involved and rarely performed surgical pro-

cedure (Remedios et al. 2009; Zhang et al. 2018). Similarly, hemodynamic and

lesion-based analyses may su↵er from vasculature-related confounds in isolat-

ing insular responses (Hillis et al. 2004). Here I present high spatiotemporal

resolution recordings from human insula and identify a functional response

profile localized to this region.

While onset responses to speech perception were mostly confined to

auditory cortex, a functional region of interest in the posterior insula demon-

strated a di↵erent morphology of onset responses. Across participants, elec-

trodes in the posterior insula showed robust onset responses to perceptual

stimuli in similar fashion to auditory electrodes. Unlike auditory electrodes,

however, posterior insular electrodes also showed robust onset responses dur-

ing speech production (Figure 3.3D). Out of all posterior insula electrodes

(n = 47), 23.4% responded significantly to speech perception and 31.9% re-

sponded significantly to speech production. These posterior insula onset elec-

trodes responded similarly to stimuli regardless of whether they were spoken

or heard (Figure 3.3).
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Figure 3.3: A functional region of interest in posterior insula shows
onset responses to both speaking and listening.
(A) Whole-brain and visualization of dual onset electrodes. Electrodes are
plotted on a template brain with an inflated cortical surface; dark gray indi-
cates sulci while light gray indicates gyri. Black outline on template brain
highlights functional region of interest in posterior insula with anatomical
structures labeled. Electrode color indicates the di↵erence in Z-scored high
gamma peaks during the speaking and listening conditions (�Z). Right hemi-
sphere is cropped to emphasize insula ROI, while left hemisphere is shown in
entirety due to lower number of electrodes.
(B) Whole-brain visualization of electrodes with onset responses only during
speech perception. Electrode color indicates the peak high gamma amplitude
during the onset response.
(C) Whole-brain visualization of electrodes with onset responses only during
speech production. Electrode color indicates the peak high gamma amplitude
during the onset response.
(D) Single electrode activity from posterior insular electrodes highlighting dual
onset responses during speech production and perception. Vertical black line
indicates acoustic onset of sentence. Subplot titles reflect the participant ID,
electrode name from the clinical montage, and anatomical ROI.
(E) Grayscale heatmaps of single-trial electrode activity during a nonspeech
motor control task, separated by no vocalization (e.g., “stick your tongue out”)
and vocalization (e.g., “say ‘aaaa’ ”). For vocalization trials, onset of acoustic
activity is visualized relative to the click accompanying the presentation of
instructions (pink) and the onset of vocalization (red).
(F) Strip plot showing the distribution of channel-by-channel onset response
peak amplitudes separated by anatomical region of interest and whether onset
responses occur only during perception (left), only during production (center),
or occur during perception and production (right). Electrodes are colored ac-
cording to the colormaps of (A), (B), and (C).
(G) Schematic of quantification of onset response for an example electrode
(e2, DC5 PSF-PI3). The first contiguous peak of activity > 1.5 SD above the
mean response constitutes the onset response and is shaded in orange. Peak
amplitude values displayed in (B), (C) and (G) are indicated.
Caption continued on next page.
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Figure 3.3: (H) Bar plot showing the estimated marginal mean (EMM ) la-
tency of the onset response in three regions of interest: auditory primary (HG
+ PT), auditory non-primary (STG + STS), and posterior + inferior insular.
Insular onset latency is comparable to primary auditory latency. Brackets in-
dicate significance (* = p < 0.05; ** = p < 0.01).
Abbreviations: HG: Heschl’s gyrus; STG: superior temporal gyrus; STS: supe-
rior temporal sulcus; MTG: middle temporal gyrus; Inf/Sup/Ant/Post/ CrS:
inferior/superior/anterior/posterior circular sulcus of the insula; LGI: long
gyrus of the insula; SGI: short gyrus of the insula; PT: planum temporale.

I hypothesized that such responses might reflect a relationship to ar-

ticulatory motor control or somatosensory processes, which prompted me to

trial a nonspeech motor control task in a subset of the participants (n = 6;

§3.4.5.1, Table D.2). The purpose of this task was to determine if such “dual

onset” responses were speech-specific or whether they could be elicited by sim-

pler, speech-related movements. In this task, participants were instructed to

follow instructions displayed on screen when a “go” signal was given; the in-

structions consisted of a variety of nonspeech oral-motor tasks taken from a

typical battery used by speech-language pathologists during oral mechanism

evaluations (St. Louis & Ruscello 1981). The “go” signal contained both a

visual (green circle) and an auditory cue (click), after which the participant

would perform the task. Some tasks required vocalization (e.g., “say ‘aaaa’

”) while others did not (e.g., “stick your tongue out”). While a few insular

electrodes did exhibit responses during the speech motor control task, they

were not consistently responsive to the speech motor control task except for

trials that involved auditory feedback (Figure 3.3E). I interpret these as re-

sponses to the click sound when instructions are displayed to the participant
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or to the subjects’ own vocalizations rather than an index of sensorimotor ac-

tivity related to the motor movements. When significance is calculated in a

time window that excludes the click sound (500-100 milliseconds post-click),

only 2% of insula electrodes (n = 49) significantly responded to the speech

motor control task. By comparison, 25.7% of sensorimotor cortex electrodes

(n = 35) significantly responded, demonstrating that the speech motor con-

trol task was sensitive to sensorimotor activity. Additionally, posterior insular

electrodes that were responsive to the speech motor control task and all dual

onset insular electrodes in the main task were only active after the onset of ar-

ticulation. This later response suggests that these electrodes were involved in

sensory feedback processing and not direct motor control. The posterior insula

region of interest was the only anatomical area in my dataset that was equally

responsive to acoustic onsets during both production and perception. While

electrodes with dual onset responses during speaking and listening were seen in

both primary/secondary auditory areas (22.7% of dual onset electrodes) and

the insula (28.8% of dual onset electrodes), electrodes with similar amplitudes

for speaking and listening were most common in posterior insula (Figure 3.3A,

F). In other words, while temporal electrodes did sometimes demonstrate dual

onset responses, the amplitudes of these responses were larger for speech per-

ception compared to production. I quantified this restriction of “dual onset”

electrodes to posterior insula by taking the peak amplitude in the first 300

milliseconds of activity prior to sentence onset greater than 1.5 SD above the

epoch mean as a measure of the onset response (Figure 3.3G).
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The response latencies of di↵erent anatomical regions can provide a

proxy for understanding how information flows from one region to another, or

where in the pathway a certain response may occur. For example, my advi-

sor’s prior work showed similar latencies between the pSTG and posteromedial

Heschl’s gyrus, indicating a potential parallel pathway (Hamilton et al. 2021).

Here, the dual onset electrodes in posterior insula responded with comparable

latency to the speech perception onset response electrodes observed in primary

(HG & PT) and non-primary auditory cortex (STG & STS), in some cases

responding earlier relative to sentence onset than the auditory cortex elec-

trodes (EMMA1 peak latency = 93.7 ± 16.2 msec; EMMAud. non�primary peak

latency = 136.7±9.4 msec; EMM insular peak latency = 103.2±11.7 msec; A1 -

Aud. non-primary p = 0.03; A1 -insular p = 0.85; Aud. non-primary-insular

p = 0.03; Figure 3.3H). This does not suggest a conventionally proposed serial

cascade of information from primary auditory cortex and is instead indicative

of a parallel information flow to primary auditory cortex and the posterior

insula, potentially from the terminus of the ascending auditory pathway. The

similar latency of posterior insular dual onset electrodes and primary audi-

tory onset suppression electrodes alongside the tendency of posterior insular

electrodes to also show low-latency onset responses during speech production

leads me to speculate that the posterior insula receives a parallel thalamic

input and serves as a sensory integration hub for the purposes of feedback

processing during speech.
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3.5.3 Unsupervised identification of “onset suppression” and “dual
onset” functional response profiles

Visualization of individual electrodes’ responses to the onset of per-

ceived and produced sentences allows for manual identification of response

profiles in the data but is subject to a priori bias by the investigators. Data

driven methods such as convex non-negative matrix factorization (cNMF) al-

low identification of patterns in the data without access to spatial information

or the acoustic content of the stimuli (§3.4.7; Ding et al. (2010)). This method

was used to identify onset and sustained responses in STG (Hamilton et al.

2018). Here, I used cNMF to identify response profiles in the data in an

unsupervised fashion using average evoked responses as the input to the fac-

torization. A solution with k = 9 clusters explained 86% of the variance in the

data (Figure 3.4A). I chose this threshold as increasing the number of clus-

ters in the factorization beyond k = 9 resulted in redundant clusters. Single-

electrode responses to spoken sentences, perceived sentences, and an inter-trial

click tone were used as inputs to the factorization such that responses to each

of these conditions were jointly considered for defining a “cluster.” The av-

erage responses of all top-weighted electrodes within cluster for the k = 9

factorization is available as a supplemental figure (Figure C.1). Visualization

of the average response across sentences of the top-weighted electrodes within

each cluster identifies two primary response profiles in correspondence with

manually identified response profiles: (c1) an “onset suppression” cluster lo-

calized to bilateral STG and Heschl’s gyrus characterized by evoked responses
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to speech production and speech perception but an absence of onset responses

during speech production; and (c2) a “dual onset” cluster localized to the pos-

terior insula/circular sulcus characterized by evoked responses to the onset of

perceived and produced sentences (Figure 3.4B, C). An additional cluster (c3)

was localized to ventral sensorimotor cortex and showed selectivity to speech

production trials, particularly prior to articulation. This cluster is located in

ventral sensorimotor cortex, and likely reflects motor control of speech articu-

lators (Bouchard et al. 2013; Breshears et al. 2015; Dichter et al. 2018).

Because the onset suppression and dual onset clusters are relatively

close to each other anatomically, I quantified their functional separation by

examining whether individual electrodes contributed strong weighting to both

clusters. I observed that despite the spatial proximity of the clusters2, the

majority of electrodes in both onset suppression and dual onset clusters were

only strongly weighted within a single cluster (Figure 3.4D). The top 50 elec-

trodes of the onset suppression contributed 86.5% of their weighting to the

onset suppression cluster and 13.5% to the dual onset cluster, while the top

50 electrodes of the dual onset cluster contributed 88.8% to the dual onset

cluster and 11.2% to the onset suppression cluster (Figure 3.4E). This sug-

gests that despite anatomical proximity, the onset responses in posterior in-

sular electrodes are not the result of spatial spread of activity from nearby

primary auditory electrodes in Heschl’s gyrus and planum temporale. Taken

2Notably, cNMF does not have information about anatomical location of these electrodes
when clustering the responses.
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together, the supervised and unsupervised analyses suggest auditory feedback

is processed di↵erently by two regions in temporal and insular cortex. Audi-

tory cortex suppresses responses to self-generated speech through attenuation

of the onset response, while the posterior insula uniquely responds to onsets

of auditory feedback regardless of whether the stimulus was self-generated or

passively perceived.
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Figure 3.4: Anatomically distinct onset suppression and dual on-
set clusters represent a subclass of response profiles to continuous
speech production and perception.
(A) Percent variance explained by cNMF as a function of total number of
clusters in factorization. Threshold of k = 9 factorization plotted as vertical
black line.
(B) cNMF identifies three response profiles of interest: (c1) onset suppression
electrodes, characterized by a suppression of onset responses during speech
production and localized to STG/HG; (c2) dual onset electrodes, character-
ized by the presence of onset responses during perception and production and
localized to posterior insula; (c3) pre-articulatory motor electrodes, character-
ized by activity prior to acoustic onset of stimulus during speech production
and localized to ventral sensorimotor cortex. Left: Cluster basis functions for
speaking sentences (purple), listening to sentences (green), and inter-trial click
(pink) for c1, c2, and c3. Center, right: Two example electrodes from the top
16 weighted electrodes. Subplot titles reflect the participant ID and electrode
name from the clinical montage.
(C) Cropped template brain showing top 50 weighted electrodes for individual
clusters (c1, c2, c3). A darker red electrode indicates higher within-cluster
weight.
(D) Individual electrode contribution to dual onset and onset suppression
cNMF clusters in both hemispheres. Top 50 weighted electrodes for each
cluster are plotted on a template brain with an inflated cortical surface; dark
gray indicates sulci while light gray indicates gyri. Red electrodes contribute
more weight to the “onset suppression” cluster while blue electrodes contribute
more to the “dual onset” cluster; purple electrodes contribute equally to both
clusters while white electrodes contribute to neither.
(E) Percent similarity of onset suppression (c1) and dual onset (c2) clusters’
top 50 electrodes. The majority of the electrode weighting across these two
clusters is non-overlapping.
Abbreviations: STG: superior temporal gyrus; CS: central sulcus. Inf. Ins. =
inferior insula, Post. Ins = posterior insula.
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3.5.4 Response to playback consistency is a separate mechanism
from suppression of onset responses

Speaker-induced suppression of self-generated auditory feedback is one

example of how top-down information can influence auditory processing. In

rodent studies, animals can learn to associate a particular tone frequency with

self-generated movements, and motor-related auditory suppression will occur

specifically for that frequency rather than unexpected frequencies that were not

paired with movement (Schneider et al. 2018). Expectations about upcoming

auditory feedback can also influence the outcomes of feedback perturbation

tasks in humans (§1.2.3.3; Lester-Smith et al. (2020); Scheerer & Jones (2014)).

I was interested if other top-down expectations about the task could a↵ect the

responses of electrodes in these data and if these populations overlapped with

speaker-induced suppression. To accomplish this, I separated the playback

condition into blocks of consistent and inconsistent playback (Figure 3.5A).

In the consistent playback block, participants were always played back the

sentence they had just produced in the prior speaking trial. In the inconsistent

playback block, participants instead were played back a randomly selected

recording of a previous speaking trial. In both cases, the playback stimulus

was a recording of their own voice.
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Figure 3.5: Playback consistency manipulation yields separate,
weaker e↵ects than onset suppression.
(A) Task schematic showing playback consistency manipulation. Participants
read a sentence aloud (purple) then passively listened to playback of that sen-
tence (blue) or randomly selected playback of a previous trial (orange).
(B) Whole-brain visualization of responsiveness to playback consistency. Elec-
trodes are plotted on an inflated template brain; dark gray indicates sulci while
light gray indicates gyri. Electrodes are colored using a 2D colormap that rep-
resents high gamma amplitude during consistent and inconsistent playback;
blue indicates a response during consistent playback but not during inconsis-
tent, orange indicates a response during inconsistent playback but not during
consistent playback, pink indicates a response to both playback conditions,
white indicates a response to neither. Most electrodes are pink, indicating
strong responses to both conditions. Example electrodes from (D) are indi-
cated.
Caption continued on next page.
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Figure 3.5: (C) Scatter plot of channel-by-channel peak high-gamma activity
during consistent playback (Y-axis) and inconsistent playback (X-axis). Ver-
tical black line indicates unity. Color corresponds to gross anatomical region.
Example electrodes from (D) are indicated.
(D) Single-electrode plots of high-gamma activity relative to sentence onset
(vertical black line). Left column (e1 and e2): Electrodes in temporal cortex
demonstrating a slight preference for inconsistent playback. Right column (e3
and e4): Electrodes in frontal cortex demonstrating a slight preference for
consistent playback and a larger preference for speech production trials.
Abbreviations: HG: Heschl’s gyrus; STG: superior temporal gyrus; PreCS: pre-
central sulcus; Supramar: supramarginal gyrus.

The majority of electrodes did not di↵erentially respond to consistent or

inconsistent playback conditions (pink-red electrodes in Figure 3.5B; electrodes

along unity line in Figure 3.5C). While 45.5% of STG electrodes (n = 55)

were significantly responsive to both consistent and inconsistent playback, only

5.5% were responsive solely during consistent playback and 0% were respon-

sive solely during inconsistent playback. Other auditory areas showed a similar

trend, including STS (both = 20.3%; consistent only = 4.3%; inconsistent only

= 2.9%; n = 69 electrodes), posterior insula (both = 15.4%; Consistent only

= 2.6%; Inconsistent only = 0%; n = 39 electrodes), and HG (both = 100%;

Consistent only = 0%; inconsistent only = 0%; n = 8 electrodes). For the sub-

set of electrodes that did di↵erentially respond, most demonstrated a slight

amplitude increase during the inconsistent playback condition that started at

the time of the onset response and persisted throughout stimulus presentation

(Figure 3.5D). Electrodes that selectively responded to inconsistent stimuli did

not have an identifiable general response profile. Most electrodes that showed a
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preference for inconsistent playback also demonstrated onset suppression dur-

ing speech production trials (e3 & e4, Figure 3.5D), but this suppression was

far stronger than any di↵erence between consistent and inconsistent playback.

A contrast between consistent and inconsistent playback was most commonly

observed in superior temporal gyrus and superior temporal sulcus. Curiously,

a subset of electrodes localized to ventral sensorimotor cortex (similarly to

cluster c3 presented in Figure 3.4B) showed an overall preference for speech

production trials with pre-articulatory activity, but within the playback con-

trast demonstrated a preference for consistent playback (e5 & e6, Figure 3.5D).

I interpret this finding as a speech motor region that indexes predictions of

upcoming sensory content for a role in feedback control.

3.5.5 Despite suppression of onset responses, phonological feature
representation is suppressed but stable between perception
and production

Prior work shows that circuits within the STG represent phonological

feature information that is invariant to other acoustic characteristics such as

pitch (Appelbaum 1996; Mesgarani et al. 2014; Tang et al. 2017). Tuning for

these phonological features is observed within both posterior onset selective

areas of STG and anterior sustained regions (Hamilton et al. 2018). Here, I

observed that onset responses are suppressed during speech production, which

motivates investigating whether phonological feature tuning is also modulated

as part of the auditory system’s di↵erential processing of auditory informa-

tion while speaking. To investigate this, I fit multivariate temporal receptive
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fields (mTRF; §3.4.9) for each electrode to describe the relationship between

the neural response at that electrode and selected phonological and task-level

features of the stimulus (Figure 3.6A). I report the e↵ectiveness of an mTRF

model in predicting the neural response as the linear correlation coe�cient (r)

between a held-out validation response and the predicted response based on

the model (Figure 3.6B, C).

Onset suppression electrodes in auditory cortex and dual onset elec-

trodes in the posterior insula were both well modeled using this approach

(x̄onset suppression electrodes = 0.17 ± 0.08; x̄dual onset electrodes = 0.16 ± 0.11; range

-0.25 to 0.64; Figure 3.6D). Within both response profiles, single electrodes

exhibited a diversity of preferences to various combinations of phonological

features, mirroring previous results showing distributed phonological feature

tuning in auditory cortex (Berezutskaya et al. 2017; Hamilton et al. 2018, 2021;

Mesgarani et al. 2014; Oganian & Chang 2019). Of note, the posterior and infe-

rior insula electrodes were strongly phonologically tuned, with a short temporal

response profile as was seen in my prior latency analysis (§3.5.2). Dual on-

set and onset suppression electrodes di↵ered from purely production-selective

electrodes in this way, as most production-selective electrodes qualitatively

did not demonstrate robust phonological feature tuning. Instead, most of the

variance in the mTRF instead was explainable by global task-related stimulus

features (i.e., whether a sound occurred during a production or a perception

trial).
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Figure 3.6: Phonological feature tuning is stable during speaking and
listening across brain regions.
(A) Regression schematic. Fourteen phonological features corresponding to
place of articulation, manner of articulation, and presence of voicing alongside
four features encoding task-specific information (i.e., whether a phoneme took
place during a speaking or listening trial, the playback condition during the
phoneme) were binarized sample-by-sample to form a stimulus matrix for use
in temporal receptive field modeling.
(B) Model performance as measured by the linear correlation coe�cient (r)
between the model’s prediction of the held-out sEEG and the actual response
plotted at an individual electrode level on an inflated template brain; dark
gray indicates sulci while light gray indicates gyri. Example electrodes from
(D) and (E) are indicated.
(C) Model performance by region of interest. Color corresponds to gross
anatomical region.
(D) Temporal receptive fields of two example electrodes in temporal and insu-
lar cortex.
(E) Temporal receptive fields of an example electrode for the four models pre-
sented in (F).
(F) Scatter plot of channel-by-channel linear correlation coe�cients (r) colored
by model comparison. The X-axis shows performance for the “base” model
whose schematic is presented in (A). The Y-axis for each scatterplot shows
performance for a modified version of the base model: task features encoding
production and perception were removed from the model (yellow); task fea-
tures encoding consistent and inconsistent playback conditions were removed
from the model (cyan); phonological features were separated into production-
specific, perception-specific, and combined spaces (magenta).
Abbreviations: HG: Heschl’s gyrus; PT: planum temporale; STG/S: superior
temporal gyrus/sulcus; MTG/S: middle temporal gyrus/sulcus; PreCG/S: pre-
central gyrus/sulcus; CS: central sulcus; SFG/S: superior frontal gyrus/sulcus;
MFG/S: middle frontal gyrus/sulcus; IFG/S: inferior frontal gyrus/sulcus;
OFC: orbitofrontal cortex; SPL: superior parietal lobule; PostCG: postcentral
gyrus; Ant./Post./Sup./Inf. Ins.: anterior/posterior/superior/inferior insula.

To directly compare phonological feature representations during per-

ception and production, I used a variance partitioning technique similar to
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the one used in §2.5.2 to omit or include specific stimulus features in the

model. In this way, the stimulus matrix serves as a hypothesis about what

stimulus characteristics will be important in modeling the neural response.

Adding or removing individual stimulus characteristics and observing di↵er-

ences (or lack thereof) in model performance serves as a causal technique for

assessing the importance of a stimulus characteristic to the variance of an

electrode’s response (Ivanova et al. 2021a). In the base model, I included 14

phonological features and 4 task-related features, similar to the base model

of Chapter 2 but without an EMG regressor. I first expanded the speci-

ficity of phonological feature tuning in my stimulus matrix by separating

the phonological feature space into whether the phonemes in question oc-

curred during perception or production (called the “task-specific” model). If

phonological feature tuning di↵ered during speech production, model perfor-

mance should increase when modeling perceived vs. produced phonological

features separately. However, I saw no significant increase in model perfor-

mance when expanding the model in this way (Figure 3.6F, pink points), a

result also observed in my EEG data (Figures 2.3, 2.4). Despite no gross dif-

ference in model performance, inspection of individual electrodes’ receptive

fields shows a suppression in the weights for production-specific phonologi-

cal feature tuning (Figure 5E, far right), again similar to EEG (Figure 2.5).

The contrast between “base” and “task-specific” model performance, while

significant, was a weak e↵ect in favor of the simpler “task-specific” model

(EMM base�task�specific phnfeat �r = �0.002, p = 0.04, d = �0.1). In con-
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trast, removal of the playback consistency information from the task-specific

portion of the stimulus matrix more substantially a↵ects model performance

(EMM base�omit consistent/inconsistent �r = 0.02, p < .001, d = 0.52). However,

the most drastic impairment of model performance emerges when removing in-

formation about the contrast of perception and production trials entirely from

the model (EMM base�omit perception/production �r = 0.11, p < .001, d = 1.4).

Upon inspection, the regions exhibiting the largest decline in encoding per-

formance with the omission of the perception-production contrast are frontal

production-responsive regions and temporal onset suppression regions, whereas

insular electrodes did not see as steep a decline in performance. This suggests

that di↵erences in encoding during speech production and perception are the

primary explanation of variance in these models. Ultimately, despite onset sup-

pression seen during speech production, higher-order linguistic representations

such as phonological features appear to be stable during speech perception and

production.

Taken together, these results provide an expanded perspective on how

auditory areas of the brain di↵erentially process sensory information during

speech production and perception. Transient responses to acoustic onsets in

primary and higher order auditory areas are suppressed during speech produc-

tion, whereas responses of these regions not at acoustic onset remain relatively

stable between perception and production. This onset suppression can be seen

in the neural time series and is also reflected in the encoding of linguistic in-

formation in temporal receptive field models. It is thus possible that the onset
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response functions as a stimulus orientation mechanism rather than a higher-

order aspect of the perceptual system such as phonological encoding. While

expectations about the linguistic content of upcoming auditory playback can

influence response profiles, the mechanism appears separate from the suppres-

sion of onset responses and is a relatively weak e↵ect by comparison. Lastly,

these results provide a unique perspective on the role of the posterior insula

during speaking and listening, characterized by its rapid responses to speech

production and perception stimuli and phonological tuning without the sup-

pression observed during speech production in nearby temporal areas.

3.6 Conclusion

In this chapter, I used a sentence reading and playback task that allowed

me to compare mechanisms of auditory perception and production while con-

trolling for stimulus acoustics. The primary objective was to assess spatiotem-

poral di↵erences in previously identified onset and sustained response profiles

in the auditory cortex (Hamilton et al. 2018) and phonological feature encod-

ing (Mesgarani et al. 2014) during speech production. Using sEEG has the

distinct advantage of penetrating into deeper structures inside the Sylvian fis-

sure, such as the insula and Heschl’s gyrus (Chang 2015). In temporal cortex,

proximal to where onset responses have been previously identified using surface

electrocorticography (Hamilton et al. 2018), I observed a selective suppression

of transient responses to sentence onset during speech production, whereas

sustained responses remained relatively unchanged between speech percep-
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tion and production (§3.5.1). The timing of the suppressed onset responses is

roughly aligned with scalp-based studies of speaker-induced suppression that

posit early components (N1 for EEG, M1 for MEG) as biomarkers of speaker-

induced suppression (Chapter 2; Hawco et al. (2009); Heinks-Maldonado et al.

(2006); Kurte↵ et al. (2023); Martikainen et al. (2005)). While I do not claim

the onset responses observed in this study and others to be equivalent to

N/M1, there is a parallel to be drawn between the temporal characteristics of

my suppressed cortical activity and the deep literature on suppression of these

components during speech production in noninvasive studies. I will expand

upon this more in Chapter 4.

Overall, this study gives clarity to both the di↵erential processing of the

auditory system during speech production and the functional role of onset re-

sponses as a temporal landmark detection mechanism through high-resolution

intracranial recordings of a naturalistic speech production and perception task.

To be specific, the suppression of onset responses during speech production

lends to the hypothesis that onset responses are an orientational mechanism.

Feedforward expectations about upcoming sensory feedback during speech pro-

duction would nullify the need for temporal landmark detection to the same

extent necessary during speech perception, where expectations about incoming

sensory content are much less precise. This raises questions about the function

of onset responses in populations with disordered feedforward/feedback control

systems (§1.3.1), such as apraxia of speech (Jacks & Haley 2015), schizophrenia

(Heinks-Maldonado et al. 2007), and stuttering (Max & Daliri 2019; Toyomura
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et al. 2020). The presence or absence of onset responses having no e↵ect on

the structure of phonological feature representations also supports this hy-

pothesis, as linguistic abstraction is a higher-level perceptual mechanism that

need not be implicated in lower-level processing of the auditory system. In

future work, I would like to further investigate the role of onset responses in

less typical speech production. Just as self-generated speech is less suppressed

during errors (Ozker et al. 2022, 2024) and less canonical utterances (Niziolek

et al. 2013), the landmark detection services of the onset response may be more

necessary in these contexts, leading to a reduced suppression of the onset re-

sponse. Future research should also aim to better dissociate onset responses

from expectancy e↵ects observed in feedback perturbation tasks, which are

similar in terms of spatial and temporal profile to onset responses in my data

due to the limitations of my naturalistic study design, yet I speculate mech-

anistically di↵erent than onset responses. My findings support a functional

network between the lateral temporal lobe, insula, and motor cortex to sup-

port natural communication. The di↵erential responses of the speech regions

of STG and insula support the role of the posterior insula in auditory feedback

control during speaking.
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Chapter 4

Discussion

Chapters 2 and 3 of this dissertation include two original research stud-

ies on processing of auditory feedback during speech production. There are

similarities between the two; for example, they both use the same task: partic-

ipants read sentences aloud, then passively listened to either consistent (imme-

diate) playback or inconsistent (randomly selected prior trial) playback (Fig-

ures 2.1; 3.2A; 3.5A). Notably, this task generates the audio for the playback

condition from the production trials, allowing for me to tightly control for

acoustic information across my experimental conditions1.

The EEG results of Chapter 2 demonstrate a suppression of the N1 and

P2 components during the speaking trials (Figure 2.2A), a finding in line with

previous noninvasive studies of speaker-induced suppression. The novelty of

these results lies in the naturalistic, sentence-level stimuli used, as most studies

of speech production via noninvasive methods avoid such unconstrained speech

stimuli due to issues with motion artifacts (EMG) from the speech articulators.

1A caveat concerning the recording technique for both experiments: while perceptual
stimuli were generated from production stimuli, minor acoustic di↵erences between the two
types of trials may have emerged from bone conduction when perceiving self-generated
speech. I did not attempt to mask bone conduction feedback with noise to preserve the
naturalistic experimental design of my task.
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I was able to correct for those artifacts in my results using a source separation

technique during preprocessing (§2.4.4; Appendix A) and by regressing EMG

recorded via external electrodes in my encoding models (§2.4.3; Figure 2.4).

I showed that the suppression of auditory feedback during speech production

observed in the N1/P2 components is unrelated to di↵erential phonetic tuning

during speech production, as the linguistic representations in my encoding

models are correlated between speech production and speech perception trials

(Figure 2.5).

The sEEG results of Chapter 3 further investigated the suppression

of auditory feedback using the same task. Because intracranial sEEG has a

much higher spatial resolution and is much less susceptible to EMG artifact

than scalp EEG, I was able to investigate the results of Chapter 2 with higher

precision. In addition to the phonological feature tuning framework I employ

in Chapter 2, my analysis in Chapter 3 is also executed through the framework

of onset and sustained responses, another organizational principle of the au-

ditory system that has been documented in my advisor’s research (Hamilton

et al. 2018, 2021). I find that onset responses are suppressed during speech

production while sustained responses are not (Figure 3.2). Similar to the SIS

observed in the EEG results, onset suppression does not a↵ect phonological

feature tuning (Figure 3.6). This onset suppression is localized to primary and

non-primary auditory cortex. I did find a separate auditory response region in

the posterior insula as well, but this region did not suppress onset responses

(Figure 3.3).
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This chapter will focus on comparing and contrasting the results of the

two studies, as well as discuss the broader implications of both studies.

4.1 Speaker-induced suppression and the auditory sys-
tem

Suppression of sensory re-a↵erence is believed to be a fundamental com-

ponent of the motor system and goal-directed movement, which of course in-

cludes speech production (Houde & Nagarajan 2011; Parrell et al. 2019). Of

specific focus in my dissertation is how this principle of the motor system can

a↵ect auditory processing. The literature on this is already fairly deep and I

have covered the relevant aspects of it in Chapter 1 (§1.2.3.1). To summarize,

research on speaker-induced suppression has focused primarily on the physi-

ology of the phenomenon, and less on the theoretical explanation for it. That

being said, one proposed function of SIS is that it is responsible for distin-

guishing internally and externally generated speech for the purposes of speech

motor control (Houde & Nagarajan 2011). SIS emerges from neural synchrony

between expectations about utterance content generated before articulation

and the sensorimotor/auditory feedback generated during articulation. For

example, speech errors are less suppressed than correct speech (Ozker et al.

2022, 2024; Houde et al. 2002; Behroozmand & Larson 2011). Even below

the error level, the degree of suppression of auditory feedback during speech

production is linked to how well the production of a speech token matches

with a canonical sensory goal for that token (Niziolek et al. 2013). For exam-
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ple, for vowel production, the first and second formants (f1, f2) are essentially

proxies for vowel height and backness, respectively (Johnson 2011). Niziolek

et al. (2013) had participants produce vowels in words like heed /hi:d/ and

head /hEd/. If the average formant values for a production of vowel /E/ are

f1 = 550 Hz; f2 = 1700 Hz, a single production of /E/ with f1 = 490 Hz;

f2 = 1775 Hz would be less suppressed than a single production with f1 = 555

Hz; f2 = 1695 Hz because it is farther from the “canonical” production of that

vowel, even if it is not consciously perceived as a speech error. So, it is clear

that the mechanism of SIS is sensitive to changes in auditory feedback and

must interface with the auditory system to some extent. The specifics of this

extent are central to the research questions of my dissertation.

4.1.1 Speaker-induced suppression and onset responses

In the original onset and sustained response profile paper (Hamilton

et al. 2018), the authors theorized that onset responses may serve a role as

an auditory cue detection mechanism based on their utility to detect phrase

and sentence boundaries in a decoder framework. Novel stimulus orienting

responses have been localized to middle and superior temporal gyrus, which

overlaps with the functional region of interest for onset responses (Friedman

et al. 2009). These findings are in line with the absence of onset responses

during speech production, as auditory orientation mechanisms during speech

perception are not necessary to the same extent during speech production due

to the presence of a robust forward model of upcoming sensory information
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(i.e., e↵erence copy) generated as part of the speech planning process; §1.1.1;

Houde & Chang (2015); Tourville & Guenther (2011)).

A notable di↵erence between the original reporting of onset and sus-

tained response profiles in Hamilton et al. (2018) and the ones I present in

Chapter 3 is that many of the electrodes reported in my analysis showed a

mixture of onset and sustained response profiles, whereas the original paper

posits a more stark contrast in the response profiles. This could be due to

di↵erences in coverage between the sEEG depth electrodes used here and the

pial ECoG grids used in the original study, as the onset response profile was

reported to be localized to a relatively small portion of dorsal-posterior STG.

Many of onset electrodes in my study were recorded from within STS or other

parts of STG; therefore, the activity recorded at those electrodes may represent

a mixture of onset and sustained responses, which explains why both would

show up in the averaged waveform. Mixed onset-and-sustained responses have

been previously reported primarily in HG/PT in a study using ECoG grids

covering the temporal plane (Hamilton et al. 2021); the use of sEEG depths in

my results may be providing greater coverage of these intra-Sylvian structures.

Alternatively, the mixed onset-sustained responses I see in my data may be a

mixture of the onset region with the posterior subset of sustained electrodes

reported in the original paper. I did observe solely onset-responsive and solely

sustained-responsive electrodes (in line with the original paper), but a major-

ity of the onset suppression response profile described in this study consisted

of a mixture of onset and sustained responses at the single electrode level.
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Responses to the inter-trial click tone observed at some electrodes are another

example of pure onset response electrodes in these data.

4.1.2 Speaker-induced suppression and linguistic abstraction

Previous research has shown that electrodes in sensory cortex are pref-

erential to specific classes of phonological features (Mesgarani et al. 2014),

which motivated their investigation in this dissertation. Although the de-

gree of SIS remains sensitive to subphonemic changes in auditory feedback

(Niziolek et al. 2013), are the invariant representations used in sensory cor-

tex suspect to di↵erences between speech perception and production? Studies

such as Niziolek et al. (2013) are important works that help explain the cog-

nitive purpose for SIS, but do not explore in detail the interaction of cortical

suppression during speech production with other organizational principles of

the auditory system. During speech perception, intermediate, abstract lin-

guistic representations are generated from low-level auditory stimuli in both

onset- and sustained-responsive portions of the auditory cortex (Mesgarani

et al. 2014; Hamilton et al. 2018). Niziolek et al. (2013) demonstrated that

the e↵erence copy, a feedforward expectation about the content of the up-

coming auditory stimulus only generated during internally produced speech,

contains goal-oriented information. This observation is a critical link in estab-

lishing SIS as a neurophysiological biomarker of feedback control, as it shows

SIS is sensitive to di↵erences between the e↵erence copy and corollary dis-

charge. A hypothesis put forth by the authors to explain why SIS is sensitive
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to subphonemic variation is that the e↵erence copy, although itself a precise

encoding of motor commands, loses its precision in sensory cortex in favor of

invariant encoding of information. Therefore, subphonemic variations would

be present in the signals being compared during feedback control. The extent

of this theorized goal-based representation in the e↵erence copy (i.e., does it

extend to higher levels of linguistic abstraction?) is left as an unanswered

question.

During speech production, linguistic representations are used during

pre-articulatory planning (e.g., Levelt (1993)’s phonological encoding stage of

speech production), meaning the invariant representations are, to some extent,

already available to the language network. This could potentially negate the

need for additional processing costs associated with segmentation of continuous

acoustic information, which is a necessary component of properly perceiving

speech. This was the observation that led me to investigate phonological fea-

ture representation in Chapters 2 and 3. The results of both studies I present

in this dissertation suggest that while SIS is sensitive to subphonemic vari-

ation (as demonstrated by Niziolek et al. (2013)), the amplitude di↵erences

observed during SIS cannot be explained by di↵erential linguistic feature en-

coding between speaking and listening (§2.5.2, 3.5.5). In other words, the

lack of invariance observed during speech production (Cheung et al. 2016) and

speech perception (§1.2.2; Mesgarani et al. (2014)) is not part of the neural

signal a↵ected by SIS.

To demonstrate this, I expanded on the N1 suppression observed in
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the ERP results of Chapter 2 and the onset suppression observed in Chapter

3 by ablating specific stimulus characteristics from mTRF encoding models

and observed how the absence of a specific aspect of the stimulus a↵ects the

model’s ability to predict the neural response (Figures 2.3, 3.5F). A concurrent

reduction in phonological feature response was identified via the mTRF ap-

proach in both the EEG and sEEG datasets (Figures 2.5, 3.6E). This suggests

that neural activity at multiple levels of representation (sensorimotor activ-

ity per SIS, phonological/linguistic representation per mTRF) was suppressed

during speaking when compared with listening. Importantly, the structure of

the receptive fields themselves was relatively consistent (albeit inverted)—that

is, the brain does not shift toward representing di↵erent phonological features

during perception and production (Figures 2.5, 3.6E). In other words, an elec-

trode that encodes plosive voiced obstruents (like /b/, /g/, /d/) during speech

perception will still encode plosive voiced obstruents during speaker-induced

suppression, but the amplitude of the response is reduced during speaking.

Although my dissertation results show consistent feature representa-

tions between speaking and listening despite magnitude changes within those

representations, one previous study did identify changes in feature representa-

tion between speaking and listening in the motor cortex (Cheung et al. 2016).

In this study, motor electrodes clustered according to place of articulation dur-

ing speech production, while during passive listening, they clustered according

to manner of articulation. However, the authors mention that it is unclear

whether these di↵erences in feature representation are the result of a single
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intracranial electrode recording from two di↵erent populations of neurons (one

sensory and one motor) or whether the same population changes its represen-

tation depending on task. While I was unable to distinguish between sensory

and motor areas with scalp EEG electrodes due to their level of spatial preci-

sion, my intracranial recordings are clearly able to distinguish between these

areas. I did identify some receptive fields in motor cortex that contain pre-

articulatory phonetic feature encoding (Figure C.4), but for the most part my

phonologically-tuned electrodes were auditory responses, unlike Cheung et al.

(2016).

4.1.3 Biomarkers of speaker-induced suppression

The N1 (and its MEG equivalent M1) has been theorized as a neural

indicator of the e↵erence copy, and its suppression has been demonstrated

for internally generated speech compared with externally generated speech

(Behroozmand & Larson 2011; Martikainen et al. 2005; Heinks-Maldonado

et al. 2006), including in the results of Chapter 2 (Figure 2.2A). The P2

is less directly associated with SIS, with limited studies linking it directly

to feedback perturbation (Brumberg & Pitt 2019; Behroozmand & Larson

2011), but it is commonly paired with the N1 in speech perception studies

to form the N1-P2 complex (Lightfoot 2016). In my results, I do find P2

suppression as well (Figure 2.2B). The N1 and P2 are generally classified as

“long-latency” auditory response components in comparison to earlier evoked

potentials like the auditory brainstem responses, which have latencies in the
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tens of milliseconds (Luck & Kappenman 2013). However, they are still faster

than later cognitive components such as the P300 and N400.

The observed suppression of the N1 and P2 components in Chapter

2 without concomitant alteration of phonological feature encoding (§4.1.2)

suggests these auditory components do not play a role in linguistic abstraction,

even if phonological feature representations emerge on a similar timescale to

the N1-P2 complex during speech perception.

4.1.3.1 EEG components and intracranial response profiles

It is tempting to compare the EEG components of Chapter 2 with the

intracranial response profiles of Chapter 3, but the comparison is not simple

to make. In terms of cognitive function, there are notable similarities between

the N1 and the onset response. The N1 was originally conceptualized as an

index of “detection of acoustic change” (Hyde 1997), but also plays a more

specific role in speech perception: the N1 has been theorized to index speech

segmentation as an auditory orientational cueing mechanism in a fashion sim-

ilar to onset responses (Sanders et al. 2002). In fact, some literature on the

N1 explicitly refers to it as an “onset response” (Luck & Kappenman 2013).

One notable di↵erence between the EEG auditory response components and

the onset responses described in Hamilton et al. (2018) is the size of gap nec-

essary to elicit the response. Onset responses are visible in the N1 after gaps

in auditory stimuli as small as 5 milliseconds (Pratt et al. 2005), while the

onset responses documented in Chapter 3.5 and originally in Hamilton et al.
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(2018) require at least 200 milliseconds of silence to generate.

While the functional links between the N1-P2 and intracranial onset

responses are pretty clear, comparisons of the anatomical similarities become

more di�cult. Source localization in EEG is nontrivial because the scalp and

skull act as a filter that spatially smears the data (Luck 2014). Of course,

surgically implanted electrodes do not have this issue. The limited number of

studies that have directly tried to link intracranial recordings to scalp EEG

potentials are generally written with a cautious tone in regards to interpreta-

tion of the spatial precision of EEG (Halgren et al. 1995). That being said,

the literature on the cortical sources of the auditory N1 agrees that it likely

originates from the superior temporal gyrus and Heschl’s gyrus, which aligns

with the anatomical localization of the intracranial onset responses I report in

Chapter 3 (Wolpaw & Penry 1977; Scherg & Picton 1991). However, using this

to draw a strong conclusion that the suppression in Chapters 2 and 3 are from

the same neural population is still a massive stretch. For example, it is nigh

impossible to di↵erentiate between posterior insular and Heschl’s responses

with EEG, two regions in my data that both exhibit onset responses but with

very pronounced di↵erences between them. In the hypothetical scenario that

I wanted to conclude that intracranial onset responses were the N1, it would

be impossible to localize the N1 activity of Chapter 2 to specifically Heschl’s

gyrus or the posterior insula.
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4.1.4 Expectancy e↵ects during speech perception are a separate
mechanism from speaker-induced suppression

A manipulation of whether the perceptual trials immediately followed

the production trials from which they were generated (consistent) or not (in-

consistent) was included in my dissertation research to assess the hypothesis

that SIS is associated with general feedforward auditory processing and not

an intrinsic characteristic of corollary discharge during speech production. For

the sEEG data specifically, I sought to delineate whether onset responses were

an important component of specifically speech perception or involved in a more

general predictive processing system.

For the sEEG results, I did observe that presenting auditory playback

in a randomized, inconsistent fashion resulted in a greater response amplitude

for some onset suppression electrodes in auditory cortex; this finding did not

hold true for most onset suppression electrodes in the data. This leads me

to believe that the suppression of onset responses is not a byproduct of gen-

eral expectancy mechanisms modulating the speech perception system, but

rather a dedicated component of auditory processing for orienting to novel

stimuli. Cortical suppression of self-generated sounds is likely a fundamental

component of the sensorimotor system, as neural responses to tones paired

with non-speech movements are attenuated relative to unpaired tones in mice

and in humans (Martikainen et al. 2005; Schneider et al. 2018). With cNMF,

I identified a cluster in ventral sensorimotor cortex that was more active for

speech production, but within the consistent/inconsistent playback split, pre-

171



ferred consistent playback. I interpret this response profile as indicative of

feedback enhancement for the purposes of speech motor control during speech

production.

In my EEG results, di↵erences between consistent and inconsistent per-

ceptual trials were small, with only three individual participants demonstrating

a significant di↵erence. Suppression can emerge from many cortical sources

(§4.1.3); therefore, linking any suppression observed during this perception-

only manipulation to the cross-modal suppression observed between speaking

and listening is not trivial using a scalp recording technique. This lack of a

result could be a mixture of the smaller e↵ect size for this manipulation (as

observed in the sEEG data) and the lower signal-to-noise ratio of scalp EEG

recordings in comparison to intracranial sEEG.

I was motivated to include this manipulation within the speech per-

ception condition by several findings. Behaviorally, participants’ habituation

to the task can a↵ect results: inconsistent perturbations of feedback during a

feedback perturbation task elicit larger corrective responses than consistent,

expected perturbations; however, there is no corroborated link between these

results and SIS (Lester-Smith et al. 2020; Mollaei et al. 2016; Gonzalez Castro

et al. 2014; Jones & Munhall 2000). The importance of predicting upcoming

sensory consequences is visible in neural data as well: unpredicted auditory

stimuli result in suppression of scalp EEG components for self-generated speech

in pitch perturbation studies (Scheerer & Jones 2014) as well as the speech

of others in a turn-taking sentence production task (Goregliad Fjaellingsdal
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et al. 2020). Other top–down influences on auditory processing and a non-

uniformity of suppression across cognitive processes makes the initial research

question regarding a connection between forward modeling of auditory stimuli

in perception and production di�cult to investigate with an unconstrained

experimental paradigm.

4.2 The insular auditory field

The intracranial data presented in Chapter 3 o↵er several distinct ad-

vantages2 over EEG; perhaps the largest advantage is the ability to image

individual brain structures separately. sEEG depths in particular have an-

other advantage over similar intracranial techniques in that it can image the

insula, which would require arduous dissection of the Sylvian fissure to reach

with a standard ECoG grid (Chang 2015; Remedios et al. 2009; Nguyen et al.

2022). In my analysis, the posterior insula served as a unique functional re-

gion in processing auditory feedback during speech production and perception

(§3.5.2). Unlike temporal cortex, onset responses were not suppressed during

speech production in posterior insula; the region instead exhibited “dual on-

set” responses during speech production and perception. The large amount of

non-overlap in weighting of “dual onset” and “onset suppression” clusters’ top

electrodes suggests that the posterior insula auditory responses I report are

not simply spatial runo↵ from neighboring Heschl’s gyrus. Furthermore, my

results are focused on the high gamma frequency band, which has less spatial

2Of course, intracranial electrophysiology also has its limitations; see §4.4.3.
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spread than lower-frequency bands (Muller et al. 2016).

A meta-analysis of the functional role of human insula parcellated

the lobe into four primary zones: social-emotional, cognitive, sensorimotor,

and olfactory-gustatory (Kurth et al. 2010). As speech production involves

sensorimotor and cognitive processes, even speech cannot be constrained to

one functional region of the insula. Cytoarchitectonically, the human insula

consists of eleven distinct regions which can be grossly clustered into three

zones: a dorsal-posterior granular-dysgranular zone, a ventral-middle-posterior

agranular-dysgranular zone, and a dorsal-anterior granular zone (Quabs et al.

2022). Based on the general organizational principles of these articles, the

dual onset responses I observed in the posterior insula overlap with func-

tional regions of interest for somatosensory, motor, speech, and interoceptive

function, and with the dorsal-posterior and ventral-middle-posterior cytoar-

chitectonic zones. The posterior insula responses I report in this dissertation

are purely post-articulatory, indicating a role in auditory feedback monitor-

ing rather than a preparatory motor role. To corroborate, the most robust

responses I observed during the speech motor control task were not to the

task itself, but rather the click sound that played before each trial (Figure

3.3E). Another recent study identified an auditory region in dorsal-posterior

insula through intraoperative electrocortical stimulation, whereby stimulation

to posterior insula resulted in auditory hallucinations, confirming the role of

this region in auditory processing (Zhang et al. 2018).

A particularly fascinating component of my results in the posterior
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insula is the response latency of the zone: I observed faster (or equivalently

fast) responses to auditory playback stimuli in the posterior insula compared

to primary (HG, PT) and higher order (STG, STS) auditory areas. While

posterior insula and HG are neighboring anatomical structures, I do not believe

my posterior insula responses to be simply miscategorized HG activity due to

the distinction between how HG and posterior insula respectively suppress or

do not suppress auditory feedback during speech production. This is supported

by animal research that has demonstrated a direct cellular pathway between

the auditory thalamus and the posterior insula (§4.2.2), as well as data-driven

insights from the Human Connectome Project that have identified functional

connectivity between posterior insula and the medial geniculate nucleus of the

thalamus (Rolls et al. 2023). While the insular auditory field does receive input

from primary and non-primary auditory areas, it also receives direct parallel

input from the auditory thalamus, evidenced in part by pure-tone responses in

the insular auditory field sometimes having a lower response latency than the

primary auditory cortex in a fashion consistent with my results (Jankowski

et al. 2023; Sawatari et al. 2011; Takemoto et al. 2014). Thus, the results

of Chapter 3 corroborate parallel auditory pathways between auditory cortex

and posterior insula but in the human brain and with more complex auditory

stimuli than pure tones. I also expand upon prior work by showing responses

to auditory feedback in the insula are also present during speech production.

These data are by no means the first documentation of in vivo record-

ings of the human insula’s responses to speech perception and production:
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Woolnough et al. (2019) also reported post-articulatory activity in the human

insula during speech production and perception. My results are distinct from

this study in several ways. First, the authors dichotomize the posterior insula

with STG, reporting that posterior insula is more active for self-generated

speech “opposite of STG.” However, my dual onset response electrodes in the

posterior insula are equivalently responsive to speech perception and produc-

tion stimuli, with only a small non-significant preference for speech production.

Second, the responses reported in Woolnough et al. (2019) di↵er in magnitude

between STG and the posterior insula, with task-evoked activity in STG in-

creasing ⇠ 200% in broadband gamma activity from baseline, while posterior

insula showed only ⇠ 50% increase in activity from baseline. In my results,

temporal and insular evoked activity are similar in magnitude. Third, the

authors did not use the same stimuli for speech production and speech per-

ception trials, instead comparing self-generated speech during production to a

listening task where speech was generated by another speaker. In my study,

I generated perceptual stimuli from individual participants’ own utterances,

allowing me to control for temporal and spectral characteristics of the stim-

uli and more directly compare speech perception with production within the

posterior insula for the same stimulus.

4.2.1 Multisensory integration in posterior insula

Overall, I interpret the posterior insula’s role in speech production as a

hub for integrating the multiple modalities of sensory feedback (e.g., auditory,
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tactile, proprioceptive) available during speech production for the purposes of

speech monitoring, based in part on previous work establishing the insula’s

role in multisensory integration (Kurth et al. 2010). Di↵usion tensor imaging

reveals that the posterior insula in particular is characterized by strong con-

nectivity to auditory, sensorimotor, and visual cortices, supporting such a role

(Zhang et al. 2018). My research motivates further investigation of the role

of the posterior insula in auditory perception and, more specifically, feedback

control of speech production.

While most lobes of the brain have clear-cut macro-functionality (e.g.,

the occipital lobe processes vision), this is not true for the insula. However,

Kurth et al. (2010) provide a meta-analysis of insula neuroimaging studies and

produce a compelling hypothesis for a potential macro-function in multisen-

sory processing. They categorize the insula according to four functional subdi-

visions (olfactory/gustatory, somatosensory, cognitive, and social/emotional).

Their interpretation for a myriad of functionality is that all of these sub-

functions are necessary for generating a “coherent experience of the world,” or

some sort of perception about the internal/external states of an individual’s

environment. While this sounds pretty abstract, perception of internal state

is a fundamental objective of the speech motor control system, as state esti-

mation is what allows for error detection during feedback monitoring (Houde

& Nagarajan 2011).

Speech motor control is fundamentally a multisensory process, as multi-

ple sensory domains provide feedback during the process: tactile/proprioceptive
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feedback from the movement of the articulators combined with auditory feed-

back from speech itself. The posterior insula region of interest I describe in

Chapter 3 appears to be mostly auditory, as it was active during speech percep-

tion and click responses (pure auditory) as well as speech production (auditory-

motor), but not during the nonspeech motor control task (pure motor). If the

region was responsive during the speech motor control task, that could have

served as an alternative explanation for the rapid response latencies, as tactile

feedback is available during speech production earlier than auditory feedback

as evidenced by phonetic phenomena such as voice onset time (Johnson 2011);

the lack of pre-articulatory activity during speech production trials further

suggests this is not the case. But, the multisensory integration documented

extensively in the insula could serve as a motivator for why this auditory field I

describe is active during speech production—although my posterior insula ROI

is not responsive to motor feedback, it may interact with nearby integration

circuits in the insula. Further sEEG experimentation explicitly addressing this

hypothesis (perhaps also in a more constrained experimental context) could

help conclude this speculation.

4.2.2 Insular auditory fields in animal models

Several animal models have been used to identify an auditory field in

the posterior insula (Linke & Schwegler 2000; Remedios et al. 2009; Rodgers

et al. 2008). This is partially due to the di�culties in recording from hu-

man insula that I have already described. Most of the animal research I will
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discuss is histological, meaning pathways between neurons are traced using a

mixture of anterograde and retrograde staining techniques, which clearly de-

fine the connectivity between di↵erent brain regions. In nonhuman primates,

invasive electrophysiology similar in the abstract to the sEEG data I present

is common, while finer spatial resolution microelectrode arrays are utilized in

rodent models. Of course, there are caveats of using animal models to study

(especially) speech research, as many aspects of vocal communication found in

humans are absent from animals both behaviorally and neurobiologically. But,

animal research is in many ways the best source of information on auditory

processing in the insula currently.

4.2.2.1 In nonhuman primates

The earliest documentation of an insular auditory field in primates

showed that neurons in the caudal insular cortex are responsive to click tones

in mangabey, rhesus, and squirrel monkeys (Sudakov et al. 1971; Pribram et al.

1954). These responses were low-latency, leading the authors to propose di-

rect projections from the auditory thalamus to the insular auditory field, but

this hypothesis was not tested. These early investigations were expanded on

by Remedios et al. (2009) to show that insular auditory responses in rhesus

monkeys di↵er from nearby auditory cortex in several ways. First, the insu-

lar neurons were less tonotopically organized than auditory cortex. Second,

the caudal insula responded preferentially to conspecific vocal communication

over other sounds. The insular auditory field documented in this paper bears
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further resemblance to my results in their finding that some insular electrodes

actually responded faster than primary auditory cortex, further suggesting a

direct thalamic projection.

Nonhuman primate research has also demonstrated the multisensory

integrative aspect of the insula I described above (§4.2.1). In macaques, the

posterior granular insula is posited to integrate sensation from many modali-

ties, including auditory, proprioceptive, and visual information (Evrard 2019).

The proposed function for such an integrative region is to assist in the moni-

toring of self-motion, a fundamental component of feedback control of speech

production in humans.

4.2.2.2 In rodents

Histological studies in rodents corroborate the proposed direct thala-

mic projection to posterior insula auditory areas. Linke & Schwegler (2000)

used a staining technique to show that the medial geniculate body of the audi-

tory thalamus projects to the primary auditory cortex, amygdala, and insular

cortex. Rodgers et al. (2008) recorded evoked cortical potentials to auditory

stimuli in the posterior insula of rat and made several interesting observations.

First, they were able to record auditory responses from the insula even when

primary auditory cortex was lesioned, confirming a direct projection from the

auditory thalamus, as auditory responses would not be possible if they were

simply “downstream” of primary auditory cortex. They also suggest the insu-

lar auditory field has a specialization for both multisensory integration (based

180



on overlap with a somatotopic representation) and auditory fear responses

(e.g., perception of a tone that was previously conditioned to appear with an

adverse stimulus such as a shock). My finding that posterior insular auditory

responses have comparable or shorter latencies to auditory responses in pri-

mary auditory cortex is also reflected in the animal literature: Sawatari et al.

(2011) found that insular auditory field response latencies were consistently

faster than core auditory areas in mice. The authors also argue against the

insular auditory field being considered an auditory belt area (which would put

it directly downstream of primary auditory cortex) based on the response la-

tencies, which is similar to why I believe my posterior insula responses are a

parallel-processed auditory area.

While multisensory integration supports higher-order auditory feedback

control, I was unable to test for a fear-conditioned auditory processing prefer-

ence in the confines of my task. However, an abstract parallel can be drawn

between the conspecific vocal preferences of macaque insular auditory field

(Remedios et al. 2009) and the fear response in rats (Rodgers et al. 2008) in

that both of these stimulus types involve some sort of emotional or social com-

ponent, which could be further supported by the insula’s connectivity to the

amygdala (Rolls et al. 2023). Returning to human subjects research, Zhang

et al. (2018) propose that auditory responses in the posterior insula are an

early stage of a posterior-to-anterior sensory-to-a↵ective gradient within the

insula. It is possible the conspecific preferences of macaque insula and the fear

responses in rat insula are homologues of this gradient in humans. This belief
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is stated in Ackermann & Riecker (2004), where they theorize that emotional

association regions in the insula eventually evolved to serve a more domain-

specific fine motor control role in speech production.

4.2.3 A separate speech planning mechanism in anterior insula

A large portion of the research on the human insula’s involvement in

speech and language comes from lesion and functional imaging studies that

posit a preparatory motor role for the insula in speech (Ackermann & Riecker

2004; Dronkers 1996; Mandelli et al. 2014). However, these studies prescribe

this role to the anterior insula, whereas my findings are constrained to poste-

rior insula, and the insula is far from anatomically or functionally homogenous

(Kurth et al. 2010; Quabs et al. 2022; Zhang et al. 2018). Circling back to

theoretical models of speech motor control, apraxia of speech being a deficit

in motor speech programming would localize AOS to premotor cortex, where

a phonological code is converted into a motor program (Tourville & Guen-

ther 2011). However, localization accounts of apraxia of speech vary greatly.

Dronkers (1996) localized AOS to the anterior insula, while modern case stud-

ies from neurosurgical impairment have instead localized AOS to the posterior

middle frontal gyrus (Chang et al. 2020) and middle precentral gyrus (Levy

et al. 2023). The latter case is of particular interest, as the middle precen-

tral gyrus has been recently proposed as a phonological-motor coordination

region (Silva et al. 2022), which is in line with theoretical conceptualization of

AOS as a disorder of motor speech programming. If we assume this classifica-
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tion of AOS to be true, the insular localization of AOS put forth in Dronkers

(1996) could be either a byproduct of confounding vasculature (as suggested

n Hillis et al. (2004)) or indicative of functional connectivity between the in-

sula and middle precentral gyrus, something which has been demonstrated in

di↵usion tensor imaging research (Mandelli et al. 2014). However, recent the-

ories have posited a separation of AOS into phonemic and prosodic subtypes

based on whether the underlying motor impairment is to laryngeal motor con-

trol (dorsal-middle precentral gyrus) or articulatory control (ventral precentral

gyrus); further research is needed to see if the anterior insula is functionally

linked to one of these subdivisions of the speech production stream over the

other (Hickok et al. 2023). Regardless, the absence of pre-articulatory motor

activity in my insular “dual onset” electrodes clearly separates this anterior

motor region from the posterior auditory one I describe.

4.3 Pre-articulatory activity

Before articulation, a communicative desire must be morphologically,

syntactically, and lexically encoded before it is transformed into a motor pro-

gram for the speech articulators (Flinker et al. 2015; Tourville & Guenther

2011; Levelt 1993). In my EEG analysis, I observed a positive deflection

in the grand average ERP (Figure 2.2) that began ⇠200 milliseconds before

articulation and peaked ⇠100 milliseconds before articulation present in the

speech production trials. I believe this activity to be related to the feedforward

linguistic and motoric preparation that must take place before articulation.
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I also observed pre-articulatory motor activity in some prefrontal/premotor

electrodes in my sEEG dataset. However, the exact pre-articulatory stages

of speech production are di�cult to dissociate with this task, as there is no

epoched timing information available as to when these processes occur in a

naturalistic context. Even in sEEG, the supplementary speech motor control

task does not segment out these stages, simply providing a “go” signal. Re-

gardless, the presence of this pre-articulatory activity exclusively during the

speech production trials motivates these stages as an explanation.

In the EEG results, prestimulus activity was also observed in the grand

average during perception trials in the form of positive activity starting at�600

milliseconds and peaking at stimulus onset. This activity may be related to

predictive components of speech perception, as feedforward processing is an

important aspect of successful speech perception (Hamilton et al. 2021; Heald

& Nusbaum 2014; Poeppel &Monahan 2011). This speculation is supported by

the structure of the task allowing participants to anticipate when they would

hear a sentence; however, this task was not operationalized in a way that allows

a more granular analysis of this phenomenon. The lack of a strong contrast be-

tween consistent and inconsistent playback in the EEG results is also contrary

to this hypothesis, as the consistent playback condition is fundamentally more

predictable than the inconsistent playback condition and thus would show an

enhancement of activity if prediction is what is driving the pre-stimulus ac-

tivity in perception trials. Notably, for both perception and production, the

polarity of the prestimulus activity was inconsistent from subject to subject.
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This internal inconsistency suggests the activity is not related to previously

described ERP components (e.g., readiness potential/Bereitschaftspotential)

as these components have a canonical negative polarity (Jahanshahi & Hal-

lett 2003; Yoshida et al. 1999; Wohlert 1993). An alternative explanation for

pre-articulatory activity in this task is this activity is reflective of residual

uncorrected EMG; however, the integrity of task-related neural components

suggests any EMG activity capable of producing such a large deflection would

not be present in the corrected data (see Appendix A).

When the pre-stimulus perceptual activity in the EEG results are re-

contextualized with the results of the consistency manipulation in sEEG, a

new hypothesis emerges. A subset of precentral electrodes that clustered with

other pre-articulatory electrodes in the cNMF analysis also showed an en-

hanced response during consistent playback relative to inconsistent playback

(although altogether more responsive to production trials; Figure 3.5D, e3 &

e4). An interesting speculation that also explains why this result may not

generalize across all participants is that this consistency enhancement reflects

sub-vocalic rehearsal during consistent trials. Because consistent playback

trials are temporally much closer to their matched production trial (cf. in-

consistent playback trials, whose corresponding production trial is taken from

a previous block and may be several minutes in the past), information about

the auditory and articulatory feedback present in the e↵erence copy may be

accessible still to participants, allowing tandem silent articulation with the per-

ceptual stimulus. Unfortunately, it is impossible to know which participants
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were engaging in this activity, but future inclusion of a dedicated silent pro-

duction component of the task may help better define these curious precentral

responses.

4.4 Limitations

There is a fundamental tradeo↵ between the ecological validity and size

of a dataset with ease of interpretability and experimental control (Ivanova

et al. 2021b). Because many aspects of my experiments presented in this

dissertation are relatively unconstrained, there are several limitations I would

like to discuss that may be alleviated with future task design.

4.4.1 Electromyographic artifact

In any noninvasive neuroimaging study of speech production, movement

artifacts caused by articulation are a concern to the integrity of the data. I

extend recent results studying speech production at a four-word phrase level

(Ries et al. 2021) by scaling up to the sentence level with evoked responses

to speech appearing relatively cleaned of EMG artifact as evidenced by the

integrity of the N1 and P2 components. Because of the success of prior stud-

ies in analyzing event-related EEG data during overt speech production (Ries

et al. 2021; Riès et al. 2013; Vos et al. 2010), I did not present further corrob-

oration of the artifact correction techniques as a primary result of my study;

however, because this study used a more continuous speech stimulus than the

prior studies described above, I provide an investigation into the e�cacy of my
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artifact correction techniques in Appendix A. This appendix is in many ways a

“recycling” of components of my Masters thesis and a subsequent manuscript

dedicated to this method that was rejected from publication after peer review

and ultimately reworked into the content of Chapter 2 and its corresponding

journal article (Kurte↵ et al. 2023).

One reason to assume that residual EMG is a↵ecting the results is

the di↵ering performance of encoding models that do or do not regress EMG

(Figure 2.4). Models that accounted for EMG as a stimulus characteristic on

the whole outperformed models that did not, which means there is variance

remaining in the postprocessed data that is well explained by EMG activity.

The inclusion of an EMG regressor was only made possible by recording fa-

cial muscle activity using auxiliary electrodes in conjunction with the EEG,

akin to how EEG researchers will record auxiliary VEOG and HEOG to assist

with artifact correction. Although previous research has demonstrated blind

source separation-based artifact correction techniques are su�cient in correct-

ing EMG artifact for ERP analysis, the substantial di↵erence in model per-

formance when this normalized EMG activity was ablated from the stimulus

matrix leads me to strongly recommend the use of auxiliary EMG recordings

to any researchers who wish to fit similar linear encoding models to speech pro-

duction data, especially as portable/multi-person EEG studies (i.e., increased

susceptibility to movement artifact) become more popular. Furthermore, I

only recorded single-channel EMG, whereas there are a plethora of facial mus-

cles that contribute to EMG artifact in the electroencephalogram. It is possi-
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ble that including activity from multiple auxiliary channels as a regressor in

mTRF models would further improve their performance, but future research is

needed to substantiate this claim. For more translational applications (such as

brain-computer interfaces), there is a trade-o↵ between ease of use and amount

of sensors which should inform EMG sensor location and quantity.

There are several reasons I do not believe the residual EMG in my

response nullifies the interpretation of these results. First, the integrity of

purely auditory responses is preserved after post-processing as evidenced by

evoked responses to intertrial click tones, which suggests the evoked responses

seen at the sentence level are not false positives caused by EMG artifact (see

Appendix A). Second, despite the contribution of EMG to linear encoding

models, I observe strong phonological feature tuning consistent with previous

research (Desai et al. 2021; Hamilton et al. 2021). Third, including EMG

as a regressor in linear encoding models ensures that phonological feature

tuning (or a similar feature space of interest) is not obscured or a↵ected by

muscle artifact. Models that include an EMG regressor show similar trends

to the models I report on in my sEEG analysis, which corroborates their

integrity. Lastly, evoked responses to sentence onset contained robust N1 and

P2 components that would not be visible in the presence of substantial noise

from EMG. The general profile of suppression of early activity during speech

production is also visible in sEEG.

It is necessary to include a disclaimer here about sEEG. sEEG is not

special when compared to other recording techniques in that there is still no
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way to obtain fundamental ground truth in the activity. Meaning, artifact can

never be fully ruled out. In EEG recordings, EMG artifact power is strongest

in the 20-30 Hz (�) range (Goncharova et al. 2003). In theory, performing a

Hilbert transform to extract high gamma (H�; 70-150 Hz) analytic amplitude

for analysis as I did in my sEEG results should sidestep much of the movement

artifact, as this frequency band is outside the typical range for EMG artifact.

The 20-30 Hz range for EMG is not fundamentally linked to the recording

technique (EEG vs. sEEG) but is rather a function of the firing rate of motor

neurons which are consistent regardless of recording technique. However, as

EMG artifact originates from a myriad of sources, it has an astonishingly wide

frequency range, with some studies reporting EMG artifact as high as 300 Hz

(Chen et al. 2019). A recent study used external EMG electrodes similar to

my approach in Chapter 3 but in conjunction with sEEG activity and found a

narrowband (at approximately the participant’s fundamental frequency (f0))

gamma component that correlated strongly with the timecourse of the exter-

nal EMG recording, suggesting that mechanical vibration caused by speech

production may be a source of artifact in addition to motor neuron activity

(Bush et al. 2022). Similarly to how I advocate for external EMG recordings

in scalp EEG experiments based on the results of Chapter 3, the authors of

this manuscript advocate for external EMG recordings in conjunction with

sEEG to minimize spurious interpretation of speech production data. While

I agree with this precaution, it was not possible for me to implement in my

dissertation study due to my experimental design predating the publication of
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this manuscript. A supplemental analysis of my speech production trials and

their correlation with the spectrotemporal characteristics of the participant’s

f0 has the potential to serve as a post-hoc validation of the absence of EMG

artifact, but I have not conducted such an analysis at this time.

4.4.2 The playback consistency manipulation

The absence of results in this manipulation in Chapter 2 and a rel-

atively weak e↵ect in Chapter 3 may be related to the task’s block design,

which was used to explicitly avoid eliciting an oddball response. My study

presented the consistent and inconsistent perceptual trials in blocks of 50 (for

EEG) or 20-25 (for sEEG) trials each, which means participants could iden-

tify when perceptual stimuli would be inconsistent with the preceding trial, a

fundamental di↵erence from the oddball tasks where deviant stimuli are pre-

sented randomly. I additionally chose not to present inconsistent stimuli in

an oddball fashion because the perceptual stimuli were generated from the

recorded productions of the participant. Thus, to generate the full range of

inconsistent perceptual stimuli in the task, a full block of production trials

is needed, and collecting this as a baseline before introducing oddball incon-

sistent stimuli would greatly extend the time of the recording sessions, and I

judged that more repetitions of each condition would be more important to

my research questions3. The block design of the task may also cause listeners

3Time is a limited resource for intracranial data collection. Intraoperative sessions are
limited to twenty minutes at most, and even bedside research studies (such as mine) have
the lowest priority for patient interaction compared to the wide variety of clinician visits.
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to adapt to the inconsistent playback stimuli over the course of the block. A

similar experiment in which all inconsistent playback trials were interspersed

randomly among consistent playback trials would facilitate a comparison to

conventional “oddball” studies of predictability in the EEG literature. Design-

ing a study in this way may also minimize the influence of potential extraneous

top–down manipulations on auditory processing (§1.2.3.3). Top–down manip-

ulations of expectations about perceptual content were a variable of interest

for this dissertation, which is why I avoided an oddball design.

The naturalistic design of the stimuli introduces many potential top–down

processes, not just the forward modeling of perceptual trial content that I

sought to investigate. For example, participant engagement with the stimuli

can a↵ect the degree of SIS observed (§1.2.3.3). My participants were not

instructed to actively listen and were not required to make any responses con-

cerning the playback condition, meaning within-subject di↵erences in attentive

listening during speech perception were left up to the independent engagement

of the participant with the task. On the other hand, speech production ne-

cessitates active listening as part of the feedback control system (§1.1). Thus,

without prompting active listening during perception, participant engagement

may have comprised some of the fundamental di↵erences between speaking

and listening task conditions. More attention to the precise manipulation of

an attentional contrast in future studies may yield more informative results,

including potentially exploring di↵erences in the N1/onset response between

active and passive speech perception trials.
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4.4.3 Recording from people with intractable epilepsy

Intracranial recordings have many advantages over noninvasive record-

ing techniques which I have discussed extensively at this point, but I have not

discussed the downsides of intracranial recordings. First, the data is incred-

ibly rare to acquire compared to noninvasive recordings and is only possible

within a handful of clinical populations (Chang 2015). This is the first limi-

tation that makes generalization of results from intracranial studies di�cult.

Furthermore, the fact that every single clinical population in which sEEG

and ECoG are recorded has a clinical necessity for brain surgery of some sort

means that most (if not all) have abnormal neuroanatomy/physiology, which

imposes another limit on generalization to the healthy brain. It also limits gen-

eralization within the population, as common pathologies for sEEG studies like

epilepsy can a↵ect individuals’ brains drastically di↵erent. This may help to

explain some of the single-subject response profiles in my sEEG results, such

as the frontal production-responsive electrodes of DC5 (Figure B.2). One of

the most common techniques for generalizing across subjects, which I employ,

is to “warp” electrodes to a common template space. But, in severe cases,

abnormal pathologies such as tumors or resection cavities may create di�cul-

ties in the generation of 3D reconstructions from the subject’s MRI, which

can in turn a↵ect the reliability of the anatomical parcellation atlas (Hamilton

et al. 2017). Nevertheless, all 3D reconstructions are manually checked and

corrected in instances where abnormal pathology a↵ects surface reconstruction

and electrode localization which ideally mitigates these issues. This potential
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scenario is relevant to my dissertation dataset as many of my participants are

pediatric or adolescent, and severe epilepsy during the early stages of neurode-

velopment can drastically alter the typical structure-function relationships of

the brain (Karami et al. 2020). Even in adults epilepsy can alter language lat-

eralization, with many people with epilepsy exhibiting more bilateral language

than people without epilepsy (Möddel et al. 2009). However, it is important to

mention that this is the only way to acquire intracranial recordings from the

human brain—there are no alternatives for researchers who want these data.

So, any caveats related to the nature of the clinical population serve as fun-

damental limitations. The only way to avoid this limitation is to corroborate

intracranial research with noninvasive recordings in healthy controls, which I

provide in Chapter 2.

4.5 Future directions

Because the datasets I present in my dissertation are both large natu-

ralistic corpora, there are many additional analyses that could be conducted

within them before new data are collected. For example, a collaborator of my

lab (Yao Chen) is currently conducting a sub-analysis on the data presented in

Chapter 3 focusing on neural responses to speech errors during the production

component of the task. In general, speech errors are an intriguing next step, as

the speaker-induced suppression literature shows that speech errors result in

less suppression of neural activity during speech production (Behroozmand &

Larson 2011; Ozker et al. 2022). While natural error analyses (such as the one
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described above) are certainly possible, an alternative possibility is to employ

an experimental paradigm that elicits speech errors, such as tongue twisters

(Ries et al. 2021) or feedback perturbation paradigms (Jones & Munhall 2000;

Toyomura et al. 2020). I have collected pilot data on a delayed auditory feed-

back task in which auditory feedback is temporally delayed ⇠200 milliseconds

in a closed-loop system (e.g., headphones) to induce speech errors. I chose

this method over pitch perturbation as delayed auditory feedback is impos-

sible to compensate for, making the task more di�cult/more likely to elicit

errors (Stuart et al. 2002). The rest of the task is designed to resemble the task

of Chapters 2 and 3, in that it involves sentence-level overt speech production

and a passive playback condition, which hopefully will facilitate comparison

to the results of my dissertation. I plan to use this paradigm to investigate

how the suppression of onset responses di↵ers during speech errors in both

the auditory cortex and posterior insula; a di↵erence in suppression modula-

tion between these two regions could help di↵erentiate the functions of these

parallel auditory areas.

4.5.1 Speech motor control across the lifespan

One advantage of recording sEEG from children’s hospitals is that my

dataset contains neural activity from a wide range of age groups, including late

childhood, early adolescence, late adolescence, and adulthood. While the data

presented in Chapter 3 are only from seventeen participants, a larger sample

size will a↵ord comparisons across age groups, something my group has begun
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to investigate in other tasks. The speech motor control system does not reach

maturity until adolescence (Walsh & Smith 2002), which leads me to hypoth-

esize that suppression of onset responses (and speaker-induced suppression

more generally) varies by developmental stage, with the amount of suppres-

sion increasing with age until adolescence. Simplifying the task may help to

recruit younger age groups, as my task as-is necessitates literacy, something

which is not guaranteed in children with epilepsy who often have concomitant

di�culties with literacy (Lah et al. 2017). The delayed auditory feedback pilot

I discuss above attempts to address this, as the task is a picture description

task based on a pre-recorded auditory stimulus (e.g., the participant hears

What are the “dinosaurs doing?” when presented with an illustration of di-

nosaurs playing soccer), which removes the literacy requirement but also adds

an additional passive listening condition (externally generated playback, ver-

sus the internally generated playback stimuli used in Chapters 2 and 3). A

pediatric scalp EEG study similar to what I presented in Chapter 2 may also

help to provide developmental insights with a larger sample size.

4.5.2 Speaker-induced suppression in apraxia of speech

Several clinical populations have demonstrated abnormal SIS when

compared to healthy controls, including people who stutter (Toyomura et al.

2020; Max & Daliri 2019), people with schizophrenia (Heinks-Maldonado et al.

2007; McGuire et al. 1995), people with Parkinson’s disease (Railo et al. 2020),

but I want to focus on apraxia of speech for this discussion, as I believe the
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potential links between the disorder and SIS are less well-defined. AOS is con-

ventionally defined as a deficit in motor speech programming with a relatively

spared feedback monitoring system: Ballard et al. (2018) used an auditory

feedback perturbation paradigm to show that individuals with AOS exhibit

typical compensatory responses to feedback perturbation of f0 and f1 . Jacks

& Haley (2015) also altered auditory feedback through pitch perturbation and

noise masking. Their results showed that noise masking, but not pitch pertur-

bation, increased speech fluency in people with AOS but not in healthy control

participants. The authors conclude that an increase in speech fluency when

auditory feedback is unavailable/unreliable indicates an over-reliance on feed-

back control in people with AOS to compensate for an impaired feedforward

control system.

So, Jacks & Haley (2015) theorized that an over-reliance on auditory

feedback may be a fundamental compensatory mechanism for people with

apraxia of speech. What does that mean for the neural processes that support

the feedback monitoring system? It is unknown whether neural responses to

auditory feedback in people with AOS would appear similar to healthy con-

trols, partially due to di�culties in gathering a large cohort of people with AOS

to investigate, as AOS is often confounded with expressive aphasia (§1.3.1;

Patidar et al. (2013); Kobayashi & Ugawa (2013)). My hypothesis is that

people with AOS may exhibit less speaker-induced suppression during speech

production than healthy controls. Recall that (1) SIS is an index of adherence

to the e↵erence copy (§1.2.3.1; Niziolek et al. (2013); Behroozmand & Larson
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(2011)); (2) the degree of cortical suppression is diminished during speech er-

rors (Ozker et al. 2022, 2024); and (3) SIS decreases during non-error acoustic

deviances from a typical production (Niziolek et al. 2013). An over-reliance

on auditory feedback could potentially lead to less suppression in people with

AOS, as feedback monitoring systems are more active.

4.5.3 Onset responses in brain-computer interfaces

Brain-computer interfaces (BCI), specifically speech-generating devices,

are an emerging neurotechnology that o↵er a unique mode of communication

to people with severe motor disorders such as amyotrophic lateral sclerosis and

brainstem stroke (Her↵ et al. 2015; Moses et al. 2021; Rabbani et al. 2019).

While the bulk of research at this point is not conducted in real time and/or

focuses on healthy controls, the ultimate goal of the field is naturalistic, em-

bodied communication for people who are completely “locked-in,” meaning

real-time decoding from clinical populations is the future of speech BCI (Met-

zger et al. 2023). As people with locked-in-syndrome have a complete loss

of voluntary motor movement, use of any acoustic or motor activity in these

speech decoders is not possible: neural activity is the only source of input for

the BCI. This poses a unique challenge that resembles imagined speech pro-

duction research in the abstract: it is impossible to tell precisely when a speech

event begins without a corresponding audible, visible, or palpable event. Thus,

“event detection” algorithms which decode the beginning of a communication

attempt are a necessary piece of the puzzle for developing speech BCI. Fur-
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thermore, such a mechanism must be incredibly precise, as both failing to

detect (false negative) or erroneously decoding neural activity not linked to an

explicit communication attempt (false positive) are both frustrating fail cases

for an individual dependent on such a device to communicate. Preliminary

case studies of speech BCI in paralyzed patients have begun to employ speech

event detection in their decoding pipeline, but the examples in the literature

are still quite limited (Moses et al. 2021). Onset responses, which index the

beginning of an acoustic event, could potentially be utilized as a neural land-

mark for a speech event decoder. Their suppression during speech production

could help to minimize false positives in an event decoder, as any decoded

speech event that contains an onset response would be either speech percep-

tion or an erroneous production, both of which should not be decoded. A

decoder which recorded activity from temporal cortex in a sliding window and

attempted to decode a speech event whenever an onset response is detected as

suppressed could be an elegant solution to the problem of ambiguous timing

information in imagined speech. A future study that explicitly demonstrates

the suppression of onset responses in imagined speech would further motivate

such a use case for onset suppression.

4.6 Conclusion

Speech perception and production have been siloed and studied inde-

pendently for decades; only recently is this beginning to change. The two

studies in this dissertation approached this dichotomy more from the speech
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perception side due to my mentor’s training. As a result, I was interested

in how organizational principles of the auditory system might change dur-

ing speech production, given the context of more coarse di↵erences in neural

processing between speaking and listening (e.g., speaker-induced suppression).

Phonological feature tuning, a theoretical proxy for linguistic abstraction dur-

ing speech perception, was an attractive phenomenon to investigate because

recent studies had shown that phonological feature tuning was present in non-

auditory regions of the brain (Cheung et al. 2016) and was encoded separately

in auditory cortex within two spatially separated “onset” and “sustained” re-

gions (Hamilton et al. 2018). So, phonological feature tuning appeared to me

as somewhat malleable: perhaps local tuning might change during speech pro-

duction, or, more generally, when the predictability of an auditory stimulus

changes. While I conclude that phonological feature tuning in local popula-

tions actually does not shift in these experimental manipulations, I was able

to demonstrate a suppression in the tuning of phonological features during

speech production that more resembles a global “gain change” than some fun-

damental representational shift. Di↵erences in neural activity were visible in

the weighting (or waveform, depending on the analytic technique), but not in

the aspects of the stimulus that my models suggest the brain were encoding.

When contextualized with the goal-oriented and acoustic sensitivity of

speaker-induced suppression, I believe this to be an interesting result. SIS is a

biomarker of the error detection process, as self-generated auditory feedback

becomes un-suppressed when one makes an error; however, it can also become
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un-suppressed without being detected as an error based on very subtle changes

in the corollary discharge relative to the e↵erence copy. Meaning, while our

brain is able to interpret slight deviations from expectations as acceptable (a

form of invariance), non-errored speech, some other aspects of the auditory

system are still quite sensitive to these deviations. While the parts of the

brain that suppress corollary discharge (via SIS) are responding di↵erently to

low-level, non-invariant acoustics, it is reassuring to see in my results that

phonological feature tuning is not also being shifted. If I did report a change

in phonological feature tuning during SIS, this would imply that phonological

features are directly “downstream” of acoustics and not a dedicated interme-

diate form of representing sensory information.

My intracranial results provided two other findings worth concluding

on: the suppression of onset responses during speech production and the ex-

istence of a low-latency insular auditory field. The suppression of onset re-

sponses (but not sustained responses) during speech production lends to the

theory that onset responses are involved in the speech segmentation process as

a temporal landmark detection mechanism. When speaking, we have knowl-

edge of where these temporal landmarks are in the e↵erence copy, so the audi-

tory system does not need onset responses to help suss them out. The auditory

responses in the insula, on the other hand, did not suppress onset responses

during speech production, so whatever role the insula has in auditory pro-

cessing is likely unrelated to speech segmentation. My working hypothesis is

that the insula is helping to concatenate sensory processing from the auditory,
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tactile, and other sensory domains during speech, but as of now that’s a future

direction.

We still have much to understand about speech production, speech

perception, language, and motor control as individual complex cognitive pro-

cesses. Auditory feedback processing is a marriage of all these domains, mean-

ing we have even more to learn. The studies I present in this dissertation

are a small step towards understanding this process in the brain, with hopes

of someday benefitting translational research relating to the assessment and

treatment of disordered auditory feedback processing, something present in

conditions such as apraxia of speech, stuttering, Parkinson’s disease, aphasia,

and schizophrenia, to name a few.
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Appendix A

Validation of EMG artifact correction during
EEG task

In Chapter 2, I used a blind source separation technique based on CCA

to identify and correct for EMG artifact (De Clercq et al. 2006). This approach

has been successful in removing EMG artifact associated with articulation

in previous EEG studies of overt speech production (Ries et al. 2021; Riès

et al. 2013; Vos et al. 2010); my approach is described in the Methods section

of that chapter (§2.4). These prior studies I reference have all focused on

speech production at the word or phrase level whereas my study focuses on

sentence-level speech production, a more naturalistic form of speech that could

potentially elevate the risk for EMG contamination of the data. As a safeguard,

I recorded EMG via auxiliary facial electrodes during the task (Figure 2.1).

Including these recordings as a regressor in linear encoding models reduces the

influence of residual EMG artifact on the response (Figure 2.4); however, for

the ERP analyses, external validation of the data set’s integrity was necessary

to deem it suitable for analysis.

To accomplish this, I compared EEG responses to the task before

and after CCA artifact correction. Responses were epoched to the acous-
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tic onset of the first phoneme of the sentence (as in Figure 2.2), as well as

two non-task-related events: the acoustic onset of the intertrial click tone

and peaks in the auxiliary EMG electrode activity as detected by the func-

tion mne.preprocessing.create eog epochs() (Figure 2.1). Significance be-

tween pre-and post-CCA-corrected epochs was assessed via LME modeling us-

ing a technique similar to the one described in Chapter 2 (§2.4): a fixed e↵ect

of trial type and a random e↵ect of subject (RMS difference ⇠ Condition +

(1|Subject)). However, instead of raw voltage values, di↵erence waves be-

tween uncorrected and CCA-corrected activity were calculated at each epoch

by subtracting the root-mean-square of the two responses averaged across

channels, then averaging across the first 300 msec of activity relative to the

epoch of interest. Although polarity is important for interpreting EEG compo-

nents such as N1 and P2, I opted to make no assumptions about the polarity

of potential EMG artifact by using the root-mean-square of the response. If

EMG were successfully removed from the data, epochs associated with EMG

activity (speech production and peak auxiliary activity) should show a larger

di↵erence wave between uncorrected and CCA-corrected activity than epochs

unassociated with EMG activity (speech perception and intertrial clicks).

Linear-mixed e↵ects modeling (Equation 2.1) provided a confirmation

that EMG was successfully removed from the data set using CCA while pre-

serving the integrity of the neural response (Figure A.1). I report the EMM

and standard error of the di↵erence waves here. Epochs associated with ar-

ticulatory activity showed a large di↵erence before and after CCA artifact
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correction (EMM Production = 58.40 ± 78.6 µV ; EMMAux Peak = 87.7 ± 79.4

µV ), whereas epochs associated with passive listening showed a small di↵er-

ence before and after CCA artifact correction (EMM Perception = 12.1±79.2 µV ;

EMM Click = 19.8±77.5 µV ). The di↵erence in how these epoch types were af-

fected by CCA was further corroborated by the e↵ect sizes of the LME model’s

contrasts, calculated as Cohen’s d (Cohen 2013). Contrast between epochs

that both involve articulation or both involve passive listening were small

(�Aux Peak�Production d = 0.038, p = .39; �Click�Perception d = 0.01, p = .96),

whereas contrasts between epochs that di↵ered in their expected contamina-

tion with EMG activity were large (�Click�Aux Peak d = �0.089, p < .001;

�Click�Production d = �0.05, p = .07; �Aux Peak�Perception d = �0.1, p < .001;

�Perception�Production d = �0.06, p = .06).
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Figure A.1: Comparison of EEG activity before and after EMG ar-
tifact correction.
(A) Stimuli (top) and grand average ERP of raw data (middle) and CCA-
corrected data (bottom) relative to displayed stimuli. Grand average plots
are separated by the epochs’ anticipated level of contamination with EMG
artifact. Left panels (red, purple) show epochs that are anticipated to be con-
taminated because of their association with articulation. Right shows (green,
pink) epochs that are anticipated to contain relatively less EMG artifact be-
cause of their association with passive listening; however, jaw clenching during
passive listening means these data cannot be assumed to be EMG free.
(B) LME model EMMs for the RMS amplitudes of 0–300 msec raw-CCA dif-
ference waves for each of the four epochs of interest. Shaded area represents
standard error. A value closer to zero indicates less activity was subtracted
from the EEG response during CCA artifact correction.
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These validation techniques suggest that CCA is a sensitive and specific

method for correcting EMG activity in my data set. Although these results

are promising, an important caveat is that there is no guaranteed method

of confirming an artifact technique is both successful (no Type I error) and

accurate (no Type II error); EEG has no “ground truth” for source localization

(Bradley et al. 2016). This caveat motivates the use of external validation

techniques described here, but also imposes a fundamental limitation on all

EEG studies which employ artifact correction techniques. I argue for the

integrity of my results despite this limitation, and I encourage those interested

in using artifact correction techniques to study naturalistic speech production

via EEG to do so.
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Appendix B

Unique single-subject response profiles in the
sEEG results

Because the dataset from Chapter 3 uses sEEG depth electrodes, I was

able to record from a wide array of cortical and subcortical areas impractical or

impossible to cover with ECoG grids. As a result, there were several interesting

trends observed within single subjects that were not robust enough to report

upon earlier but do warrant a more speculative discussion.

Occipital coverage was generally limited for this study, but one subject

(DC7) had three electrodes in the right lateral occipital cortex that strongly

preferentially responded to speech production trials and to click responses

(Figure B.1 e2 PT-MT15 pproduction = 0.01; pperception = 0.9). I identified

this area using my unsupervised clustering analysis: cNMF identified a cluster

selective to clicks and speech production localized to the occipital lobe (Figure

C.1, cluster 6). I interpret this as a byproduct of my task design, as text was

displayed during speech production trials (the sentence to be read aloud) but

not during perception trials (Figure B.1D). The between-peak duration of the

bimodal click response observed in the cNMF cluster is ⇠1000 milliseconds,

which corresponds with the amount of time a fixation cross was displayed at
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the beginning of each trial (§3.4.5). Based on this information, I conclude

these occipital electrodes for DC7 are encoding visual scene changes between

fixation cross and text display, but I advise caution in generalizing this to a

functional localization as I only observed this trend in a single subject.
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Figure B.1: Single-subject visual scene change responses in occipital
cortex.
(A) Inflated cortical reconstruction of single-subject (DC7) right hemisphere
with significant electrodes (SI bootstrap t-test; see §3.4.8) visualized. Light
gray represents gyri while dark gray represents sulci. Electrodes are colored
according to their SI values. Example electrodes in (B) and (C) are indicated.
(B) Single-electrode plots showing visual scene change responses in middle
occipital sulcus during speech production (purple) and perception (green).
Shaded area represents margin of error. Subplot titles reflect the participant
ID and electrode name from the clinical montage.
(C) Single-electrode plots showing responses to speech production (purple),
consistent (blue) and inconsistent (orange) playback conditions, and the inter-
trial click (pink). Shaded area represents margin of error. Subplot titles reflect
the participant ID and electrode name from the clinical montage. The elec-
trodes in this panel appear to be most responsive during speech production and
the click sound, both of which temporally correlate with visual scene changes.
(D) Expanded task schematic to illustrate where visual scene changes occur in
the task. Rows represent information seen, heard, and spoken by the partici-
pant over the course of a trial. The time on the X-axis is not to scale due to
trial-to-trial variability in reaction time duration in participant responses and
is instead relative to the di↵erent types of events visualized at t=0 in (B) and
(C). Multiple panels are provided to emphasize that the timing of events does
not fundamentally change for consistent versus inconsistent playback. Visual
scene changes are indicated on the timeline with a red triangle.
Abbreviations: MOS: middle occipital sulcus.

In a separate single subject (DC5), I observed electrodes in the right in-

ferior frontal sulcus (just dorsal of pars triangularis of the inferior frontal gyrus)

that responded selectively to speech perception and inter-trial click tones (Fig-

ure B.2 e1 pproduction = 0.31; pperception < .001). Unlike onset suppression elec-

trodes in auditory cortex, these electrodes were silent during speech production

for onset and sustained responses. The amplitude of production responses in-

creased as the depth progressed laterally towards pars triangularis, but the
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final electrode of the depth still had a (barely) non-significant response to

speech production trials (DC5 AMF-AI8 pproduction = 0.06; pperception = 0.45).

Unlike the occipital electrodes described above, the inferior frontal perception-

selective electrodes of DC5 did not emerge as a functional region in the un-

supervised clustering analysis and were interspersed with other perception-

selective electrodes from other subjects localized to PT and HG (Figure C.1,

cluster 7). While the convention of inferior frontal cortex being monolithically

a speech production region is increasingly being challenged in contemporary

research (Fedorenko & Blank 2020; Flinker et al. 2015; Hickok et al. 2023;

Tremblay & Dick 2016), the confinement of the perception-selective electrodes

in this region to a single subject gives me hesitation to bolster those claims

with these data.
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Figure B.2: Single-subject perceptual responses in inferior frontal
cortex.
(A) Inflated cortical reconstruction of single-subject (DC5) right hemisphere
with significant electrodes (SI bootstrap t-test; see §3.4.8) visualized. Light
gray represents gyri while dark gray represents sulci. Electrodes are colored
according to their SI values. Example electrodes in (B) and (C) are indicated.
(B) Single-electrode plots showing perceptual responses in inferior frontal cor-
tex during speech production (purple) and perception (green). Shaded area
represents margin of error. Subplot titles reflect the participant ID and elec-
trode name from the clinical montage.
(C) Single-electrode plots showing responses to speech production (purple),
consistent (blue) and inconsistent (orange) playback conditions, and the inter-
trial click (pink). Shaded area represents margin of error. Subplot titles reflect
the participant ID and electrode name from the clinical montage.
Abbreviations: IFS: inferior frontal sulcus.
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Appendix C

Supplemental figures
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Figure C.1: 9 presented cNMF clusters explain 86% of the variance
in the data (§3.4.7; Figure 3.4A).
“Onset Suppression” and “Dual Onset” clusters presented in Results (Figure
3.4B) here are labeled as Clusters 2 and 1, respectively. “Pre-articulatory
Motor” cluster presented in Results (Figure 3.4B) here is labeled as Cluster
3. The responses plotted are the cluster basis functions of individual clusters
relative to either sentence onset (production and perception conditions) or the
inter-trial click tone (click condition).
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Figure C.2: Individual electrodes for all subjects with available imag-
ing (n=15) plotted on the cvs avg35 inMNI152 atlas brain, color-
coded by anatomical region of interest.
Cortical surface inflated for better visualization of insular electrodes. Elec-
trode visualization in native subject space is shown in Figure C.3.
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Figure C.3: Electrodes visualized on 3D reconstructions of individual
subjects’ MRIs, color-coded by anatomy.
Color gradient represents density of electrode coverage. A separate recon-
struction of individual subjects’ insulas is provided for visualization of insular
electrodes not visible from lateral cortical surface. Each subject displayed here
is visualized on an averaged brain in Figure C.2.
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Figure C.4: Phonological feature representation in negative delays in
inferior frontal cortex.
(A) Inflated template brain reconstruction identical to Figure 3.6B but with
example electrodes from (B) indicated instead. Dark gray indicates sulci while
light gray indicates gyri. Color corresponds to linear correlation coe�cient (r)
values of mTRF models at a single-electrode level.
(B) Single-electrode temporal receptive fields demonstrating phonological fea-
ture tuning in inferior frontal cortex across participants. Notably, the strongest
weighting for phonological features is consistency at negative delays (pre-
articulatory). Phonological feature tuning is strongest in IFG across partici-
pants (e1, 2, 3) and receptive fields in other areas of frontal cortex are better
modeled by task-level features (e4), but show the same temporal selectivity as
phonologically tuned electrodes in IFG.
Abbreviations: IFG: inferior frontal gyrus; MFG: middle frontal gyrus.
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Appendix D

Supplemental tables

ID Age Sex Languages Spoken EMG Placement

OP1 24 X English N/A
OP2 25 F English, Gujarati N/A
OP3 21 F English, Spanish orbicularis oris & mandible
OP4 23 F English orbicularis oris & mandible
OP5 18 F English, Mandarin orbicularis oris & mandible
OP6 22 F English orbicularis oris & mandible
OP7 27 F English, Spanish orbicularis oris & mandible
OP8 23 F English orbicularis oris & mandible
OP9 24 F English, Spanish, Polish orbicularis oris & mandible
OP10 30 M English orbicularis oris & mandible
OP11 21 F English submentalis
OP12 26 M English masseter
OP13 35 M English orbicularis oris & mandible
OP14 23 M English masseter
OP15 23 F English mylohyoid
OP16 25 M English orbicularis oris & mandible
OP17 30 M English masseter
OP18 28 M English masseter
OP19 23 M English masseter
OP20† 21 M English orbicularis oris & mandible
OP21 20 F English masseter

Table D.1: Participant demographics for EEG participants discussed
in Chapter 2.
Participant IDs marked with (†) are excluded from analysis due to a recording
error.
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ID Age Sex Seizure Focus

TC1† 9 M Left temporo-parieto occipital
DC2 14 M Right hemisphere
TC3 19 F Left temporal
DC4 21 M No access to record
DC5 19 M Right frontal
TC6⇤ 14 F Right sensory frontal
DC7⇤ 20 M Right temporal
DC8 16 F No strong localization
DS9 37 M Left temporal

DC10⇤ 14 X Left temporal
DC11 13 M Bilateral frontal
DC12 14 F Right hemisphere and midline
DC13⇤ 8 F Left hemisphere
DC14 18 F Right frontal white matter
DC15 20 F Left frontotemporal
DC16⇤ 9 F Right frontal
DC7⇤ 17 F Left frontal

Table D.2: Table of age, sex, and seizure localization for each partic-
ipant discussed in Chapter 3.
Participant IDs marked with (*) participated in the supplementary speech mo-
tor control task described in §3.4.5.1. Participant IDs marked with (†) were
excluded from analysis due to the presence of tuberous sclerosis complex. M
= male, F = female, X = patient declined to disclose.
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Appendix E

Glossary of acronyms

A

A1 primary auditory cortex ; first used in §1.2.1 ⇧ The final output of

the ascending auditory pathway and the first part of the cerebral cortex

that processes auditory sensation. Also referred to as Heschl’s gyrus.

AOS apraxia of speech; first used in §1.3.1 ⇧ A motor speech disor-

der characterized by an impairment of the speech articulators without

concomitant muscle weakness.

B

BCI brain-computer interface; first used in §4.5.3 ⇧ A term for any

piece of technology (software or hardware) that allows a human to con-

trol a device using neural activity alone. These are an attractive future

direction for speech neurosciences as a whole, as people who cannot com-

municate by other means (e.g., people with locked-in syndrome) could

benefit from such a device.
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C

CCA canonical correlation analysis ; first used in §2.4.4 ⇧ A source sep-

aration technique used for EMG artifact correction in EEG (see EMG,

EEG).

cNMF convex non-negative matrix factorization; first used in §3.4.7 ⇧

An unsupervised clustering technique that weights electrodes according

to the similarity of their responses without access to anatomical infor-

mation about the electrodes.

D

DIVA directions of velocities into articulators ; first used in §1.1.1 ⇧ A

neuroanatomically and computationally precise model of speech produc-

tion and speech motor control (Tourville & Guenther 2011).

E

ECoG electrocorticography ; first used in §1.1.2.1 ⇧ An intracranial

neuroimaging technique which records the local field potential of neurons

through a grid of electrodes that are placed on the pial surface of the

brain during surgery.

EEG electroencephalography ; first used in §1 ⇧ A neuroimaging tech-

nique that records excitatory postsyaptic potentials of neurons (Buzsáki
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et al. 2012). Usually refers to scalp-based recording techniques but in-

tracranial variants exist as well (see ECoG, sEEG).

EMG electromyography ; first used in §2.2 ⇧ A recorded electrical

potential from a motor neuron and a common source of artifact in EEG

recordings (see EEG).

EMM estimated marginal means ; first used in §2.5.1 ⇧ A common

statistic reported in linear-mixed e↵ects model analyses that takes the

mean over the fitted results of the model.

EOG electrooculography ; first used in §2.4.3 ⇧ Electrical potentials

generated by eye movement and a common source of artifact in EEG

recordings (see EEG). Commonly divided into horizontal (hEOG) and

vertical (vEOG) components, which correspond to eyeblinks and sac-

cades, respectively.

ERP event-related potential ; first used in §2.2 ⇧ An analysis technique

commonly used in EEG research where neural response is averaged rel-

ative to the presentation of a stimulus to identify a canonical response

to that stimulus (see EEG; Luck (2014)).

F

F1; F2 first and second formants ; first used in §4.1 ⇧ The first and

second formants are common measures utilized in acoustic phonetics and

serve as a proxy for vowel height and laterality (i.e., front vs. back).
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FACTS feedback-aware control of tasks in speech; first used in §1.1.1

⇧ A theoretical model of speech motor control which emphasizes the

goal-based nature of speech production (see Parrell et al. (2019)).

fMRI functional magnetic resonance imaging ; first used in §1 ⇧ A

neuroimaging technique which measures hemodynamic changes in blood

oxygenation via a superconducting magnet as a metric of brain activity.

The “f” in fMRI refers to the comparison of activity during a task to a

baseline control to measure task-related neural activity.

H

hEOG horizontal electrooculography ; first used in §2.4.3 ⇧ See EOG.

HG heschl’s gyrus ; first used in §1.2.1 ⇧ A gyrus on the top of the

temporal lobe that receives early auditory information from the auditory

thalamus. Part of the primary auditory cortex (A1) with the planum

temporale (PT). Not to be confused with high gamma, which I abbrevi-

ate as H�.

HSFC hierarchical state-feedback control ; first used in §1.1.1 ⇧ A the-

oretical model of speech control which posits the brain monitors sensory

feedback during speech production using an internal state estimation of

the vocal tract (Houde & Nagarajan 2011).
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I

ICA independent components analysis ; first used in §2.4.4 ⇧ A source

separation technique used to correct artifact in EEG activity (see EEG).

IFG inferior frontal gyrus ; first used in §1.1.2 ⇧ The ventral-most

gyrus of the frontal lobe, bordered posteriorly by precentral gyrus and

inferiorly by the Sylvian fissure. Consists of three parts: pars triangu-

laris, opercularis, and orbitalis. Broca’s area is thought to be somewhere

in IFG but there is disagreement in the field about exactly where. The

definition I use in this dissertation is pars triangularis and opercularis,

a.k.a. the posterior 2/3 of IFG.

J

JoCN journal of cognitive neuroscience; first used in §2.1 ⇧ A peer-

reviewed journal in which the results of Chapter 2 are published (Kurte↵

et al. 2023).

L

LME linear mixed-e↵ects modeling ; first used in §2.4 ⇧ A statistical

model capable of separately regressing fixed and random e↵ects; used in

both results chapters to account for across-subject variation in neural

response.
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M

MEG magnetoencephalography ; first used in §1.2.3.1 ⇧ A noninvasive

neuroimaging technique which measures the magnetic fields generated

by neuron potentials via a superconducting magnet.

MNI montreal neurological institute; first used in §3.4.4 ⇧ A com-

mon three-dimensional coordinate system for the brain, named after the

titular institute a�liated with McGill University.

MOCHA multichannel articulatory database; first used in §2.4 ⇧ A

corpus of sentences to be spoken that accounts for the natural phonetic

variation of English, originally curated by Texas Instruments and MIT

(Wrench 1999).

MRI magnetic resonance imaging ; first used in §1 ⇧ See fMRI.

mTRF multivariate temporal receptive field ; first used in §2.4.7 ⇧ see

TRF.

P

PET positron emission tomography ; first used in §1 ⇧ An invasive

neuroimaging technique which measures change in metabolic activity

using a radioactive tracer as an index of neural activity.

PLT perceptual loop theory ; first used in §1.1.1 ⇧ A theoretical model

of speech motor control which posits the perceptual systems of the brain
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are responsible for feedforward and feedback control (Indefrey & Levelt

2004).

PT planum temporale; first used in §1.2.1 ⇧ A portion of cortex just

posterior to Heschl’s gyrus (HG), on top of the temporal lobe and tucked

into the Sylvian fissure. Part of primary auditory cortex (A1).

R

ROI region of interest ; first used in §3.4.4 ⇧ A neuroanatomical unit

specifying an area of the brain that is either functionally (e.g., frontal

eye fields) or anatomically (e.g., superior temporal gyrus) constrained.

S

sEEG stereo-electroencephalography ; first used in §1 ⇧ An invasive

neuroimaging technique which records the local field potential of neurons

through strips of surgically implanted electrode contacts that penetrate

the cortex.

SI suppression index ; first used in §3.4.8 ⇧ A quantification of how much

an electrode responds during speech production versus perception trials

that has been utilized in prior research of auditory feedback processing

(Flinker et al. 2010).

SIS speaker-induced suppression; first used in §1.2.3.1 ⇧ A phenomenon

in which the neural response interally generated speech is suppressed in
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relation to externally generated speech.

Spt temporo-parietal junction; first used in §1.1.2.2 ⇧ Spt is a com-

monly referenced auditory-motor integration area situated somewhere

in posterior superior temporal gyrus and/or supramarginal gyrus. The

term was coined by Hickok and colleagues in the early 2000s and is tech-

nically not an acronym, but instead an ironic shortening of “the spot”

(Hickok, p.c.). A common backronym for Spt is “Sylvian parietal tem-

poral” (Hickok 2007).

STG superior temporal gyrus ; first used in §1.1.1 ⇧ An important

structure in the temporal lobe for speech perception; sometimes referred

to as non-primary auditory cortex or Wernicke’s area.

STS superior temporal sulcus ; first used in §3.4.8 ⇧ The sulcus that

runs inferior of superior temporal gyrus (see STG).

STRF spectrotemporal temporal receptive field ; first used in §2.4.7 ⇧

see TRF.

T

TRF temporal receptive field ; first used in §2.4.7 ⇧ A linear model-

ing technique based on ridge regression that I utilize in both chapters.

It has many names in the literature, but mTRF (multivariate TRF),

STRF (spectrotemporal TRF), and linear encoding model are the most

common.
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V

vEOG vertical electrooculography ; first used in §2.4.3 ⇧ See EOG.
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