
Copyright

by

Garret Kurteff

2020



The Thesis committee for Garret Kurteff
Certifies that this is the approved version of the following thesis:

Modulation of Neural Responses to Naturalistic Speech

Production and Perception

APPROVED BY

SUPERVISING COMMITTEE:

J. Liberty Hamilton, Supervisor

Rosemary Lester-Smith



Modulation of Neural Responses to Naturalistic Speech

Production and Perception

by

Garret Kurteff

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN SPEECH, LANGUAGE, AND HEARING SCIENCES

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2020



Dedicated to Willow and Cherry



Acknowledgments

I acknowledge the participants who graciously volunteered their time

to participate in my study. I acknowledge the many undergraduate research

volunteers that made linguistic analysis of this dataset possible through their

transcription work: Nicole Currens, Jade Holder, Claire Huber, Amanda Mar-

tinez, Valerie Mercado, Paranjaya Pokharel, Christopher Truong, and Cas-

sandra Villarreal. I acknowledge graduate students Maansi Desai and Mary

Lowery and research assistant Ian Griffith for their assistance in data collec-

tion and analysis. I acknowledge Dr. Rosemary Lester-Smith for her assistance

in EMG electrode placement and her contributions to my literature review.

Lastly, I acknowledge Dr. Liberty Hamilton for her unparalleled support as a

mentor throughout my first research project in my PhD program.

v



Modulation of Neural Responses to Naturalistic Speech

Production and Perception

Garret Kurteff, M.S.S.L.H.S.

The University of Texas at Austin, 2020

Supervisor: J. Liberty Hamilton

Speech production is under-studied compared to speech perception

largely due to complications in data collection caused by articulation. In

electroencephalography (EEG), these complications manifest as electromyo-

graphic activity (EMG) originating from the muscles that control articulation

(Chen et al. 2019). This is unfortunate because EEG is well-suited for studying

the rapid temporal changes in speech production. In addition, the few EEG

studies of speech production are limited to the single-word level, which limits

the generalizability of studies to how speech is used in everyday contexts.

In this thesis I present an EEG study of the differences between speech

production and perception using sentence-level naturalistic stimuli. Partici-

pants overtly produced sentences from the MOCHA-TIMIT (Wrench 1999)

corpus then listened to playback of themselves producing the sentences. Per-

ception trials were then split into predictable and unpredictable trials. Pre-

dictable trials consisted of playback of the previously produced sentence, while
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unpredictable trials consisted of playback of a randomly selected previously

produced sentence. In this thesis, two contrasts are compared: (1) overt

production of sentences versus passive listening to sentences, and (2) pas-

sive listening to predictable sentences versus passive listening to unpredictable

sentences. Canonical correlation analysis (CCA) was used to remove EMG

artifact from the recorded EEG.

To demonstrate removal of EMG and preservation of neural responses

in CCA-corrected EEG data, event-related potential (ERP) analysis was used

on neural responses to perception stimuli, inter-trial click tones, and activity

recorded from auxiliary facial EMG electrodes. These ERP analyses revealed a

reduction in amplitude for production trials and facial EMG activity after CCA

artifact correction and a preservation of early auditory responses in inter-trial

click tones, suggesting that EMG was successfully removed while preserving

neural responses. After validation of EMG removal, perception and produc-

tion trials were compared using ERP analysis. Responses to produced sen-

tences were found to have reduced amplitude when compared with perceived

sentences, which is consistent with previous research on speaker-induced sup-

pression. Differences in stimulus predictability during speech perception had

an effect on response amplitude as well; however, this difference was weaker

than the difference in amplitudes observed while comparing the differences be-

tween perception and production trials. Multivariate temporal receptive field

modeling was used to examine phonological tuning in perception and produc-

tion. Models demonstrated that speaker-induced suppression does not reflect
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a change in neural encoding of phonological features but instead a generalized

reduction in response amplitude during speech production. Understanding the

differences between speech perception and production in a naturalistic context

has implications for developing brain-computer interfaces and understanding

the neural basis of communication disorders such as apraxia of speech and stut-

tering. This thesis also serves as a proof-of-concept for studying sentence-level

speech production using EEG by demonstrating an effective way of removing

EMG artifact while preserving integrity of neural responses.
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Chapter 1

Introduction

The neuroscience of language is frequently studied in heavily constrained

experiments that bear little immediate connection to the language we use in

our daily lives. While such studies have contributed to our understanding of

how language works in the brain, the desire to specifically study more “natu-

ralistic” language as it is represented in the brain is strong (Hamilton & Huth

2020). The objective of this thesis is to expand the study of speech production

using naturalistic stimuli.

There is an additional degree of separation between the study of lan-

guage and how it used in daily life: language research is often restricted to

speech perception. While there are definitely overlaps in neural representa-

tion between speech perception and speech production (Wilson et al. 2004;

D’Ausilio et al. 2009; Meister et al. 2007; Watkins et al. 2003), the processes

are often studied in isolation. This separation of perception and production

is likely reinforced by the propagation of neurobiological models of language

that emphasize this dichotomy (Broca 1861; Wernicke 1874; Hickok & Poeppel

2007; Tremblay & Dick 2016). Additionally, it can be difficult to compare pro-

duction and perception responses in a single experiment, as different stimuli
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are usually used to study the two independently.

This dichotomy has led to speech production being comparatively un-

derstudied, as researchers must consider additional methodological constraints

when attempting to study speech production. Every widely used noninvasive

neuroimaging technique is impacted by head movement during image acqui-

sition (Jiang et al. 2019; Burgess 2020; Friston et al. 1996). Because speech

production involves movement of speech articulators (tongue, lips, jaw, etc.),

head movement is a fundamental component of speech production. To ensure

that reliable data are acquired, many researchers have used methods of study-

ing speech production that are additional degrees of abstraction away from

natural speech, such as covert speech, where the movement of articulators

is imagined instead of executed (Shuster 2003; Okada et al. 2018). Another

technique for avoiding movement is to acquire imaging data before articulation

begins or after articulation has completed, as examining time windows where

articulation is not actively taking place can prevent the influence of move-

ment caused by articulation (Singh et al. 2018). A common characteristic

of these methods is that they do not directly examine the speech production

that occurs in everyday scenarios. In order to study speech production in a

naturalistic context, methods for dealing with the recording errors caused by

articulatory movement must be developed.
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1.1 Speech Production: What We Know

Although the neuroscience of speech production is relatively under-

studied, especially when using naturalistic stimuli, there are well-developed

models of the neurobiology of speech production supported by neuroscientific

results (Perkell et al. 1997; Tourville & Guenther 2011; Parrell et al. 2019;

Houde & Chang 2015). A universal inclusion in these models is the concept

of sensorimotor control of speech, which describes the mechanisms by which

a speaker can detect and correct errors while speaking. This is accomplished

in part through feedback (corrective) control, a term used in speech produc-

tion models such as Directions Into Velocities of Articulators (Tourville &

Guenther 2011) (DIVA) to refer to mechanisms for detecting changes in real

time between predicted and actual somatosensory and auditory consequences

of speech production. This is in contrast with feedforward (predictive) con-

trol, which contains motor programs of speech production that are updated in

real-time by error correction signals from the feedback system.

The expected sensory consequence of the control system is often referred

to as the efference copy, and neuropsychological evidence for this mechanism

is found in studies that use altered auditory feedback to create mismatches

between the expected and perceived sensory consequences of speech (Hawco

et al. 2009; Hashimoto & Sakai 2003; Zheng et al. 2010; Behroozmand &

Larson 2011; Greenlee et al. 2013), usually through altering the fundamental

frequency (f o) or the first formant (F 1) of produced speech. The way speakers

automatically respond to altered auditory feedback differs based on the de-
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gree of perturbation. For small changes in feedback, participants oppose the

perturbation by adjusting their f o/F 1 in the opposite direction of the pertur-

bation (Burnett et al. 1998; Greenlee et al. 2011; Keough et al. 2013). For

larger changes in feedback, participants follow the perturbation by adjusting

their f o/F 1 in the same direction of the perturbation (Burnett et al. 1998;

Houde 1998). For example, in a study that changed feedback by altering f o,

Burnett et al. (1998) found the proportion of “opposing” responses decreased

and the proportion of “following” responses increased as f o perturbation in-

creased from 25 cents to 300 cents. However, Hawco et al. (2009) found that

the magnitude of correction to f o perturbation decreased for changes above 200

cents, which they explain by theorizing that larger changes in f o are no longer

perceived as internally generated, making them less relevant to the correction

mechanisms described above.

Other behavioral parameters can also influence subjects’ responses to

feedback perturbation, which gives us insight into what characteristics of

speech modulate the control system. Lester-Smith et al. (2020) altered f o

and F 1 individually during speaking and listening, and also in predictable

and unpredictable blocks. In unpredictable blocks of perturbation, f o and F 1

were shifted suddenly in random trials, while in predictable blocks f o and F 1

were gradually shifted over the course of consecutive trials. The authors found

that participants were able to adapt to and correct shifted f o and F 1 in pre-

dictable blocks and had difficulty correcting for unpredictable feedback in f o

and F 1. Furthermore, in F 1 but not f o, participants’ degrees of response to
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unpredictable alteration was correlated with both degree of correction in the

predictable perturbation block and also acuity to changes in F 1 during pas-

sive listening. The differences in feedback correction in predictable and unpre-

dictable contexts presented in this study demonstrate that the predictability

of a perturbation plays a role in an individual’s ability to correct that pertur-

bation, and the differences in how f o and F 1 respond to the parameters of the

experiment suggests that there may be disparate feedback mechanisms for the

voice (which controls f o) and the articulatory tract (which controls F 1).

The feedforward and feedback systems are complicated and still not

fully understood, but the incorporation of auditory feedback during speech

production provides a fundamental link between speech perception and pro-

duction. Additionally, feedforward and/or feedback responses to altered au-

ditory feedback can be disrupted in various disorders including schizophrenia

(Heinks-Maldonado et al. 2007; McGuire et al. 1995; Woodruff et al. 1997),

apraxia of speech (Ballard et al. 2018), stuttering (Daliri et al. 2018), dyslexia

(van den Bunt et al. 2017), and neurodegenerative disorders such as Parkin-

son’s disease (Hoffman 2014; Parrell et al. 2017).

1.1.1 Perceptual Responses to Speech Production are Suppressed

While some aspects of speech perception occur during speech produc-

tion, there are some key differences in how these responses differ to speech

perception in the absence of speaking. While imaging studies have demon-

strated that regions of the temporal lobe associated with speech perception
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are active during production, the responses in these regions during production

are relatively suppressed compared to those during pure speech perception

(Martikainen et al. 2005; Brumberg & Pitt 2019), a phenomenon known as

speaker-induced suppression (SIS). The exact neural mechanisms behind SIS

are not well understood. Changes in neural responses can be traced to specific

neural components in EEG and MEG studies such as the N100(m) (Brumberg

& Pitt 2019; Martikainen et al. 2005). Previous MEG research has suggested

that SIS does not reflect a general suppression of the auditory cortex during

speaking (Houde & Nagarajan 2011), which is supported by models such as

DIVA that posit sensory feedback as an important component of motor speech

control (Tourville & Guenther 2011). Because SIS does not represent a general

suppression of auditory cortex activity, it most likely involves the suppression

of specific components of speech perception (for example phonological feature

encoding (Mesgarani et al. 2014)) that are not necessarily involved in feedback

control of speech. That being said, which components of speech perception

are suppressed during speaking are unknown. Studies examining the effect

of altered auditory feedback on SIS have found SIS is absent when auditory

feedback does not match the speaker’s expectation (i.e., efference copy) for the

feedback (Heinks-Maldonado et al. 2006; Niziolek et al. 2013).

Speaker-induced suppression provides an example of how perception

and production systems interact while speaking; however, many aspects of

this interaction are not well-documented. The primary region involved in per-

ceiving speech is the posterior superior temporal gyrus (pSTG), which has
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been shown to encode linguistic information about speech, such as phonolog-

ical features (Mesgarani et al. 2014). The pSTG has also been implicated in

processing auditory feedback during speaking alongside the superior parietal

temporal (Spt) area (Houde & Nagarajan 2011; Chang et al. 2013).

Different regions of the cortex involved in speech production also be-

have differently in response to changes in predictability. Unpredictable feed-

back situations such as altered auditory feedback can result in an increase of

activity in the pSTG, Spt and right inferior frontal/premotor regions (Heinks-

Maldonado et al. 2006; Tourville et al. 2008). The middle temporal gyrus

(MTG), on the other hand, shows a decrease in activity during altered audi-

tory feedback (Zheng et al. 2010; Gauvin et al. 2016). That is, MTG activity

is suppressed during altered auditory feedback while pSTG, Spt and right in-

ferior frontal/premotor region activity is suppressed during normal speaking.

While the MTG and pSTG/Spt are activated in seemingly competing patterns

of suppression during speaking, it is possible that these processes work in tan-

dem with each other: regions exhibiting suppressive behavior in unpredictable

contexts (MTG) could be filtering external stimuli so that regions that exhibit

amplifying behavior in unpredictable contexts (pSTG, STG) can properly at-

tenuate and correct errors in speech production (Houde et al. 2002; Chang

et al. 2013).
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1.2 Predictability

As discussed above, a proposed bridge between the phenomenon of

speaker-induced suppression and altered auditory feedback studies is predictabil-

ity. Speaker-induced suppression appears to only function in predictable con-

texts, such as errorless speech production. Using fMRI, Okada et al. (2018)

found a repetition suppression effect in the left inferior frontal gyrus was modu-

lated by phonetic similarity in dyads of monosyllabic words: phonetically sim-

ilar dyads demonstrated a greater degree of suppression. This result suggests

predictability can affect the degree of speaker-induced suppression, possibly

due to the predictive nature of feedforward control of speech.

In auditory perturbation studies, altering auditory feedback causes the

perceptual component of speech production to become unpredictable, and thus

responses are not suppressed so that the errorful production may be corrected.

Stimulus predictability has been observed as a modulator of neural activity

in speech perception experiments, where unpredictable stimuli result in an

increased neural response known as mismatch negativity (Fitzgerald & Todd

2020; Bishop & Hardiman 2010; Hawco et al. 2009; Näätänen et al. 2007)

(MMN). MMN is believed to be a distinct neural component that occurs 150-

200ms after stimulus onset (Hawco et al. 2009; Näätänen et al. 2007). Given

its polarity and temporal proximity to the N100 (see §1.3.1), the components

are often compared but are believed to be different. For example, Hawco et

al. observed MMN but no N100 response in an f o perturbation task (Hawco

et al. 2009). Additional studies have shown that perceiving a predictable au-
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ditory stimulus will result in relative suppression of responses compared to an

unpredictable auditory stimulus in lower-level auditory processing (Fitzger-

ald & Todd 2020; Bishop & Hardiman 2010) as well as in speech perception

(Astheimer & Sanders 2011; Bendixen et al. 2014).

Error correction mechanisms provide a theoretical link between stimu-

lus predictability and speech production. For speech perception, a theoretical

motivation for the importance of stimulus predictability is speech segmenta-

tion. Speech is a continuous signal that needs to be segmented into smaller

units of representation, such as sentences/words/phonemes, for proper com-

prehension by the listener (Giraud & Poeppel 2012; Bahl et al. 1983). The

predictability of syllable sequences is used in the transitional probability the-

ory of language acquisition, where unpredictable syllable sequences that are

statistically less likely to occur in a language are used to identify word bound-

aries by infants acquiring a language (Saffran et al. 1996). In adults, the

superior temporal gyrus (STG) has been functionally parcellated into “onset”

and “sustained” response profiles (Hamilton et al. 2018), with onset responses

occurring at sound edges. While onset responses occur regardless of linguistic

content, their involvement in acoustic edge detection could implicate them in

the speech segmentation process and therefore predictability. This suggests

onset responses to speech could differ between perception and production;

that is, onset responses present during speech perception could be suppressed

during production.
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1.3 Using Electroencephalography (EEG) to
Study Speech Production

Changes in articulation and linguistic content (i.e., phonemes) occur

in a very rapid timescale (around 50ms (Chang 2015)). While the anatomical

specificity of fMRI makes the method appealing, fMRI measures hemodynamic

response and can often take multiple seconds to acquire an image. The rapid

temporal resolution of electrophysiologal methods such as noninvasive EEG

and invasive electrocorticography (ECoG) makes them well-suited for studying

speech production.

1.3.1 Event-Related Potentials and Components

The event-related potential (ERP) technique is a popular method for

analyzing data with EEG (Luck 2014). In an ERP study, changes in EEG

amplitude are analyzed relative to an event of interest to the researcher. For

example, a researcher interested in studying the phoneme /m/ could average

all trials relative to the onset of /m/ to create an event-related potential for

the EEG response to /m/. The process of obtaining ERP data by timelocking

to events is referred to as epoching.

ERP components are observed positive and negative deflections in the

EEG response (Luck 2014; Luck, Steven J., & Kappenman, Emily S. 2011).

Components have a highly predictable timecourse and are well-documented to

generalize across studies. Two components of interest to this thesis are the

N100 and P200 components, which have been associated with early automatic
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responses to auditory stimuli (Lightfoot 2016; Lijffijt et al. 2009). The N100

is a negative deflection that occurs around 100ms (80-150ms (Lijffijt et al.

2009)) after stimulus onset, and the P200 is a positive deflection that occurs

around 200ms (150-250ms (Lijffijt et al. 2009)) after stimulus onset. These two

components are often grouped together as the “N1-P2 complex.” The N1-P2

complex has been shown previously to be modulated by the predictability of

the auditory stimulus (Hawco et al. 2009; Martikainen et al. 2005; Lijffijt et al.

2009) and is believed to be suppressed during speaker-induced suppression

(Brumberg & Pitt 2019; Martikainen et al. 2005). The N100 component is

also theorized as a neural marker of the efference copy (Brumberg & Pitt

2019; Heinks-Maldonado et al. 2007).

1.3.2 EEG Artifacts

While EEG’s high temporal resolution makes it appealing for the study

of speech production, there are a number of potential confounds that manifest

in the form of artifacts. An artifact is any extraneous signal recorded by an

EEG electrode that does not originate from the neurons the electrode intends

to record from (Islam et al. 2016). The techniques used to remove artifact from

EEG signal can be classified as either artifact rejection or artifact correction

(Luck 2014). Artifact rejection is the complete exclusion from analysis of trials

contaminated with artifact and, while effective, has the potential drawback of

substantially reducing the number of trials in an analysis, possibly affecting

the statistical power. Artifact correction allows for trials with artifact to be
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included in the analysis by subtracting voltage from the EEG signal to “zero

out” artifacts. The drawback of artifact correction is that it can lead to Type

I (false positives) or Type II (false negatives) error in the “cleaned” signal. A

visualization of all the common types of EEG artifact is present in Figure 1.1.

Figure 1.1: Common artifacts displayed in single-subject plots of raw EEG
data.

1.3.2.1 Electrooculographic (EOG) Artifact

Because EEG records scalp activity, eye movement is a potential cause

of artifact. EOG takes two primary forms depending on the direction of eye
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movement: (1) blink artifacts (vertical EOG) and (2) saccade artifacts (hori-

zontal EOG) (Berg & Scherg 1991; Makeig & Others 1996; Keren et al. 2010).

Both blinks and saccades occur spontaneously and automatically. Volitional

blinks can be minimized by instructing the participant to blink as a little as

possible. The removal/correction of EOG artifacts is a well-documented pro-

cedure (Gomez-Herrero et al. 2006; Dimigen 2020; Gao et al. 2009; Keren et al.

2010; Jiang et al. 2019; Islam et al. 2016) and most software suites for analysis

of EEG data (e.g., BrainVision Analyzer, EEGLab, MNE) come bundled with

blind source separation techniques for isolation and removal of EOG artifact.

For most EEG researchers who do not use complex visual stimuli that would

elicit an increased amount of EOG artifact, correction of EOG is trivial.

1.3.2.2 Electrocardiographic (EKG) Artifact

EKG artifact (sometimes referred to as ECG) is another spontaneous

and automatic source of artifact, generated by the heartbeat (Barlow & Du-

binsky 1980; Tamburro et al. 2019). It is visible in the EEG as rhythmic,

transient spikes at a frequency that roughly corresponds with heart rate. The

removal of EKG is also well-documented, and the majority of blind source

separation techniques used to remove EOG (such as Independent Component

Analysis (ICA)) can be used to remove EKG as well (Tamburro et al. 2019;

Jiang et al. 2019; Barlow & Dubinsky 1980; Islam et al. 2016).
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1.3.2.3 Electromyographic (EMG) Artifact

EMG artifact is a broad category of artifact and is used to describe

any activity recorded by the EEG electrodes originating from a muscle. In the

context of speech production research, EMG refers to activity originating in

muscles specifically associated with speech production. This includes the mus-

cles of the tongue, lips and jaw, but also muscles from the pharynx, larynx, and

velum. Most muscles of speech production are volitionally controlled, which

adds variability to their timecourse. The large number of source muscles and

variability associated with volitional control makes EMG artifact much more

difficult to isolate than EOG and EKG artifact using methods like ICA (Mc-

Menamin et al. 2010; Shackman et al. 2009; Chen et al. 2019). In addition,

the frequency range of EMG responses is very wide: some researchers cate-

gorize EMG within the alpha (8-13Hz) and beta (13-20Hz) bands (Friedman

& Thayer 1991), while others report broader frequency distributions in the

1-200Hz range (Goncharova et al. 2003). ICA is very successful at isolating

neural components with similar topographic distribution, voltage change and

timecourse from trial to trial, similarities which EMG artifact often does not

have trial-to-trial.

At the single-word level, there has been success at isolating and cor-

recting EMG activity through a blind source separation technique similar to

ICA called Canonical Correlation Analysis (CCA) (Vos et al. 2010; De Clercq

et al. 2006). The primary difference between ICA and CCA is that CCA ex-

cels in identifying data that have low autocorrelation within a specified sliding
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window. EMG activity is weakly autocorrelated compared to EOG, EKG and

EEG signal due to how variable its timecourse can be. CCA has been success-

fully used to remove EMG in a synthetic data set (De Clercq et al. 2006) and

at the single-word level in a speech production task (Vos et al. 2010).

1.3.3 Multivariate Temporal Receptive Field Modeling

Another advantage to the high temporal resolution of EEG is that a

large number of samples of neural activity can be acquired, which allows for

computationally intensive modeling techniques. The multivariate temporal

receptive field (mTRF) is a method for modeling activity of neural populations

(in this case, electrodes) in response to certain stimulus features and is often

utilized with EEG and ECoG datasets (Martin et al. 2018; Hullett et al. 2016;

Crosse et al. 2016; Di Liberto et al. 2015; Hamilton et al. 2018). These models

use linear regression to predict the EEG time series from a combination of

acoustic, linguistic, or behavioral features, which allows researchers to test

hypotheses about which specific acoustic, linguistic, or behavioral features of

speech drive neural responses and how these responses can be modulated by

context. Phonological features such as place and manner of articulation are

common stimulus features used in mTRF modeling, as they are theorized to

be neurally represented in the STG (Mesgarani et al. 2014; Hamilton et al.

2018). mTRF models, while commonly used with speech perception data, are

less commonly used with speech production data. Using mTRF modeling on

speech production data could provide insights into whether speaker-induced
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suppression (see §1.1.1) reflects a general reduction in response intensity or if

specific features of speech perception are not encoded when perceiving self-

generated speech.

1.4 Objective and Hypotheses

To summarize, the objective of this thesis is to study speech production

in a naturalistic context using EEG. To feasibly accomplish this, novel artifact

correction techniques must be implemented. I am interested in how neural

responses to speech production and perception differ and which behavioral

stimulus characteristics can modulate the degree of response suppression dur-

ing speech perception, one possible modulator being stimulus predictability.

The hypotheses of the study are presented below:

• Hypothesis 1: To develop methods for removing EMG from EEG data

recorded during naturalistic speech production, canonical correlation

analysis (CCA) will be utilized. I hypothesize that CCA will be able

to successfully remove EMG artifact from EEG data while preserving

the integrity of the recorded neural responses.

• Hypothesis 2: Using naturalistic speech production and perception

stimuli, I hypothesize that a relative suppression in amplitude of the

production responses compared to the perception responses will be ob-

served in the N100/P200 components of the EEG.
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• Hypothesis 3: When comparing responses to predictable and unpre-

dictable naturalistic speech perception stimuli, I hypothesize that the

responses to predictable stimuli will be reduced compared to the unpre-

dictable stimuli in the N100/P200 components of the EEG.
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Chapter 2

Methods

2.1 Participants

21 EEG participants were recruited from flyers placed around the Uni-

versity of Texas at Austin campus (11 female, 10 male; age range 18-35; age

mean 24.4±3.9). One participant (OP0020) was excluded due to a recording

error, and another participant (OP0004) was excluded due to delays in tran-

scription (see §2.5). All participants were native speakers of English. Pure

tone audiometry and a speech-in-noise hearing test were used to ensure all

participants had typical hearing. Pure tone audiometry followed standard

clinical guidelines (Working Group on Manual Pure-Tone Threshold Audiom-

etry 2005). Hearing responses to the pure tone audiogram consisted of bilateral

hearing thresholds of <25dB in the range of 125 to 8000Hz. The QuickSIN

test (Killion et al. 2004) was used to assess hearing in noise after confirmation

of typical hearing via audiogram. A range of 0-3 dB SNR loss was observed

during QuickSIN testing, which was within normal limits. Participants pro-

vided written consent for participation in the study and were compensated

at a rate of $15/hour for their participation. Sessions lasted an average of

one hour. All experimental procedures were approved by the Institutional

Review Board at the University of Texas at Austin. Table 2.1 summarizes
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demographic information of the participants in this study.

ID Gender Age Languages Spoken EMG Placement

OP0001 M 24 English N/A
OP0002 F 25 English, Gujarati N/A
OP0003 F 21 English, Spanish orbicularis oris & mandible
OP0004 F 23 English orbicularis oris & mandible
OP0005 F 18 English, Mandarin orbicularis oris & mandible
OP0006 F 22 English orbicularis oris & mandible
OP0007 F 27 English, Spanish orbicularis oris & mandible
OP0008 F 23 English orbicularis oris & mandible
OP0009 F 24 English, Spanish, Polish orbicularis oris & mandible
OP0010 M 30 English orbicularis oris & mandible
OP0011 F 21 English submentalis
OP0012 M 26 English masseter
OP0013 M 35 English orbicularis oris & mandible
OP0014 M 23 English masseter
OP0015 F 23 English mylohyoid
OP0016 M 25 English orbicularis oris & mandible
OP0017 M 30 English masseter
OP0018 M 28 English masseter
OP0019 M 23 English masseter
OP0020 M 21 English orbicularis oris & mandible
OP0021 F 20 English masseter

Table 2.1: Participant information.

2.2 EEG Data Acquisition

Neural responses were recorded continuously using a 64-channel scalp

EEG cap connected to a BrainVision actiChamp amplifier (Brain Products,

Gilching, Germany). Data were acquired at a sampling rate of 25kHz, and

impedance level was kept below 15kΩ throughout recording. Conductive gel
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was applied between the scalp and electrodes using a flat-tipped syringe to re-

duce impedance. Pycorder, software developed by Brain Products, was used to

control and record responses from the amplifier. For 2 participants (OP0015,

OP0016), an amplifier battery change necessitated pausing of the task. Con-

sequently, for these subjects, recording was split into two different data files.

Trials at the end of the session where the battery needed to be changed were

excluded from analysis to prevent edge artifact.

Audio levels were tested prior to the start of task and were presented to

the participant via 3M E-A-Rtone Gold 10Ω insert earbuds (3M, Minnesota,

USA) at a comfortable volume, and the participant’s responses were recorded

via a wall-mounted Audio Technica U853rw cardioid condenser microphone

(Audio Technica, Tokyo, Japan). Insert earbuds were not noise-cancelling,

so participants could hear their live auditory feedback during sentence pro-

duction1. Soundproof paneling in the recording booth and throughout the

recording suite minimized background noise during data collection. Auditory

stimuli were recorded and synchronized using a StimTrak stimulus processor

(Brain Products). Visual stimuli were presented on an Apple iPad Air 2 (Ap-

ple, California, USA). The stimuli were controlled by the participant during

data collection through custom interactive software developed in Swift (Ap-

ple). Stimulus changes were locked to the refresh rate of the screen at 60Hz to

1Earbuds were foam-tipped which likely reduced the amplitude of auditory feedback;
however, auditory feedback is still available to the participant through a mixture of atten-
uated air conduction and bone conduction, and lack of access to auditory feedback is not a
concern for this study.
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minimize jitter and obtain high temporal precision data, as is commonly done

in psychophysics software such as the MATLAB PsychToolbox.

To isolate vEOG and EMG activity, four auxiliary electrodes were used.

vEOG electrodes were placed above and below the participant’s left eye. An

abrasive conductive gel was used to reduce impedance at facial electrodes (Abr-

alyt gel, Brain Products). Because EMG activity can originate from many

muscles, different placements were trialed across participants. Placement ef-

ficacy was assessed by the number of EMG activity-related events that were

detected using the MNE function mne.preprocessing.create eog epochs(),

which uses a peak detection process to find artifacts on the specified channel

(Figure 3.1). One participant (OP0008) consented to additional time during

pre-recording setup to test multiple EMG electrode placements; for this sub-

ject, placement on the origin and insertion of the masseter muscle resulted

in the largest number of identified EMG events. Across all subjects, EMG

activity recorded from the masseter muscle, with one electrode on the origin

(zygomatic arch) and one on the insertion (angle of mandible) resulted in the

largest number of EMG events. However, a placement on the mental pro-

tuberance of the mandible and the superior orbicularis oris also resulted in a

large number of identified EMG events and was used on participants for whom

electrode adhesion to the angle of the mandible was unreliable. A summary

of facial electrode placement and responses can be found in Figure 2.12.

2Images in Figure 2.1, panels A and B, used under the Creative Commons Attribution-
Share Alike 3.0 Unported license: https://creativecommons.org/licenses/by-sa/3.0/.
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Figure 2.1: EMG placement. A: Electrode schematic for orbicularis oris &
mentalis placement. B: Electrode schematic for masseter placement. Both
placements used a reference electrode on the zygomatic process. C,D: EEG
response in the raw data to detected peak activity from the electrode place-
ments in A and B, respectively. More details about how these epochs were
generated can be found in §3.1.2.

Additional electrode placements, such as on the submental triangle

and mylohyoid, were trialed in individual subjects. Two subjects (OP0001,

OP0002) did not have auxiliary electrodes for identification of EMG activity.

The purpose of these auxiliary EMG electrodes was to detect EMG activity

22



associated with the onset of articulation, as speech-onset articulation would

cause the largest artifact in the temporal window of interest for the analyses

described in §2.8. The masseter, orbicularis oris, mylohyoid and submentalis

have all been implicated in jaw movement by previous facial EMG studies

(Stepp 2012; Van Eijden et al. 1993; Rastatter & De Jarnette 1984).

2.3 Experimental Design

The task was designed using a dual perception-production block paradigm,

where trials consisted of a dyad of production component followed by percep-

tion component. Trials began with participants reading a sentence displayed

on the stimulus presentation iPad. The following perception component was

split into two experimental conditions: predictable and unpredictable. During

predictable perception trials, audio from the production component of the dyad

was played back, making auditory stimuli between perception and production

identical3 (Figure 2.24, panel B). During unpredictable perception trials, au-

dio from a previous predictable dyad was played back, causing a stimulus

mismatch between the perception and production components of the current

dyad. Dyads switched between predictable and unpredictable perception every

3In Figure 2.2 panel B, the amplitude between production and perception trials is visibly
different. The spectral characteristics of the stimuli are identical (except amplitude). Pro-
duction stimuli were recorded into the amplifier through the wall-mounted microphone while
perception stimuli were recorded through the built-in iPad microphone. Earbud volume was
calibrated for each participant to ensure a comfortable listening level, so amplitude between
perception and production as perceived by the participant are assumed to be similar.

4Icons in Figure 2.2 panel A used with permission from Flaticon: https://

freepikcompany.com/legal.

23



50 trials. Sessions lasted between 300 and 400 trials to ensure a large num-

ber of trials for each condition (Luck 2014). Sentences used in the task were

taken from the MultiCHannel Articulatory (MOCHA) database, a corpus of

sentences designed to include a wide distribution of phonemes and phonologi-

cal processes typically found in spoken English (Wrench 1999). A subset of 50

sentences of the total 460 sentences in MOCHA was randomly chosen for use in

the task, with the exception of one subject (OP0001) for whom 100 sentences

were used. Before random selection, 61 sentences were manually removed by

the author for containing offensive semantic content (e.g., “Women may never

become completely equal to men.”) or being difficult for an average reader

to produce (e.g., “Many wealthy tycoons splurged and bought both a yacht

and a schooner.”) to reduce extraneous cognitive effects of the task and error

production, respectively.

Figure 2.2: Task overview. A: schematic of experimental design. Production
trials (blue) are used to create stimuli for perception trials (green), which are
then divided into predictable (yellow) and unpredictable (magenta) blocks.
B: Waveform, spectrogram and Praat TextGrid comparing perception and
production trials with identical phonetic information.
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Stimulus presentation was controlled by the participant on an iPad run-

ning custom software written in Swift (version 4, Apple). During production

trials, stimuli were presented in a white font on a black background after a

1000ms fixation cross to minimize visual artifact in the EEG signal. The stim-

ulus iPad was placed on an overbed table to minimize arm travel needed to

interact with the screen and ensure that stimuli were presented at a comfort-

able reading distance. Participants were given as much time as they needed

to read the sentence, after which they pressed a “Next” button to begin the

perception component of the trial. Following a 1000ms fixation cross, percep-

tion stimuli were played to the participant accompanied by a black screen on

the iPad to again minimize visual artifact. During the task, the Swift software

collected timing information on button presses and stimulus presentation that

was used to generate a log file to assist in data preprocessing. Log files con-

tained: (1) within-block trial number, (2) cumulative trial number, (3) whether

the trial was perception or production, (4) whether the trial was predictable

or unpredictable, (5) a timestamp of when the stimulus was presented, (6)

transcriptions of the perceived/produced sentence5, and (7) how many times

the presented sentence had been repeated during the data collection session.

5Transcriptions of produced sentences were taken directly from the MOCHA corpus and
assume no errors were made during production. Additional steps were taken to make sure
any errors produced during the task were included in the transcription (see §2.5).
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2.4 EEG Signal Preprocessing

All preprocessing was performed offline. EEG, EOG and EMG data

were downsampled from 25kHz to 128Hz using BrainVision Analyzer (Brain

Products). Data were recorded at 25kHz because the audio signals from the

microphone and iPad were recorded on the same amplifier as EEG for easy

synchronization of stimulus audio with the EEG, and a high sampling rate

for audio stimuli was necessary in order to use a match filter for transcription

purposes (see §2.5). Subsequent preprocessing steps were performed using

custom Python scripts and functions from the MNE-python software package

(Gramfort et al. 2014). Data were then concatenated across multiple blocks

for the 2 participants who had multiple blocks of data collected. A linked

mastoid (electrodes TP9, TP10) reference was applied followed by a 60Hz

notch filter to remove electrical line noise artifact. For one subject (OP0017),

one of the reference electrodes (TP9) was a bad channel and was interpolated

prior to referencing. A 1-30Hz bandpass filter was applied to facilitate artifact

rejection and independent component selection; however, artifact correction

was performed on non-bandpassed data, with a 1-15Hz bandpass filter being

applied to artifact-corrected data before analysis. All filters applied to the

EEG were designed using the finite impulse response method (Saramaeki et al.

1993).

Next, power spectral density by channel was visually inspected to iso-

late bad channels. Bad channels and segments were then manually annotated

for rejection. EKG, EOG, and EMG artifacts were corrected using procedures
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detailed below.

2.4.1 Artifact Correction through Independent Component Anal-
ysis and Canonical Correlation Analysis

Independent component analysis (ICA) was performed using MNE to

remove EKG and EOG artifact from the data. ICA is a blind source separa-

tion technique widely utilized by EEG researchers to identify and correct for

artifact in the data (Jiang et al. 2019; Barlow & Dubinsky 1980; Gao et al.

2009; Dimigen 2020). The number of ICA components selected was set to

the number of non-bad channels. ICA was performed using an information-

maximization approach (Bell & Sejnowski 1995), and manually rejected chan-

nels and segments were ignored during the fitting of ICA. EOG epochs were

generated using activity from the vEOG auxiliary electrodes and used to de-

tect ICA components related to EOG activity. Components related to EOG

and EKG activity were visually inspected and rejected.

While ICA was fit on 1-30Hz bandpass filtered data, it was applied to

unfiltered data because canonical correlation analysis (CCA) works best on

minimally filtered data due to the wide range of frequencies in which EMG

artifact can occur (Goncharova et al. 2003). The post-ICA data were saved

as a .fif file that was converted to a .vhdr file using a custom version of

the Philistine Python package (Alday 2018) to make the ICA-corrected data

compatible with the MATLAB script used to run CCA. After conversion, the

data were highpass filtered at 0.16Hz to remove low frequency EMG before
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CCA (Vos et al. 2010). CCA was completed in the MATLAB (MATLAB 2017)

script EEGLab (Delorme & Makeig 2004) using the AAR plugin (Gomez-

Herrero et al. 2006). EEGLab was used to delete any channels that were

annotated as bad in MNE before the AAR plugin was used. Bad channels

were interpolated prior to analysis. The AAR plugin estimated power spectral

density of EEG and EMG components using a Welch spectrum estimator with

a Hamming window. The approximate frequency separating the EEG and

EMG was set at the default 15Hz. The options passed to the BSS algorithm

included ‘eigratio’=1e6 and the default criterion options for optimization:

(‘ratio’=10, ‘range’=[0, 32]). CCA was run in two passes: first, a 30-

second window to remove tonic muscle activity; second, a 2-second window

to remove rapid bursts of EMG associated with speech production. For these

analyses, both the window length and window shift were set to 30 or 2 seconds,

respectively.

2.5 Transcription

Accurate timing information for words, phonemes and sentences was

generated to allow epoching of EEG data to multiple levels of linguistic repre-

sentation (see §2.2, panel B). To expedite this process, a modified version of the

Penn Phonetics Forced Aligner (Yuan & Liberman 2008) (P2FA) was used to

automatically generate Praat (Boersma 2001) TextGrids (Figure 2.2, panel B).

As an input, P2FA used a transcription of the task generated by the iPad log

file that was then manually edited to check for errors by dyads of undergradu-
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ate research volunteers. P2FA-generated TextGrids were checked for errors by

undergraduate research volunteers in a similar fashion. The author supervised

the transcription process and checked the final TextGrids for accuracy before

generating the event files used in the analyses. Because auditory stimuli for

the perception and production components of the task were identical, the pro-

duction TextGrids with confirmed accurate timing information were used in

conjunction with a match filter, which aligned recorded production audio to

recorded perception audio using convolution. The match filter was used to find

the onset and offset of each sentence and automatically generate TextGrids for

the perception component of the task. Perception component TextGrids were

manually inspected by the author for accuracy before generation of event files.

2.6 Event-Related Potential Analysis

Event files were automatically generated using the iPad log files and

the semi-automatically generated TextGrids. Event files contained start and

stop times for each phoneme, word and sentence in each recording session, as

well as information about each: perception versus production, predictable ver-

sus unpredictable, phoneme/word/sentence ID, phoneme/word/sentence tran-

scription, and current repetition within block. Additional event files with start

and stop times for each inter-trial click sound were generated using a match

filter.

All epochs used for event-related potential (ERP) analysis in this study

were generated from these event files. Neural data was bandpass filtered 1-
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15Hz before ERP analysis.

2.7 Multivariate Temporal Receptive Field Analysis

The multivariate temporal receptive field (mTRF) approach was used

to describe the selectivity of a neural response to given stimuli (Crosse et al.

2016; Di Liberto et al. 2015; Hamilton et al. 2018). Forward modeling mTRFs

attempt to describe the statistical relationship between the input (given stim-

uli) and the output (the predicted EEG response). Crosse et al. (2016) con-

ceptualized TRFs as “a filter that describes the linear transformation of an

ongoing stimulus to an ongoing neural response.”

EEG(t, n) =
∑

f

∑

t

w(f, τ, n)s(f, t− τ) + ǫ(t, n) (2.1)

Figure 2.3: Equation for the forward model temporal receptive field. This
model demonstrates the neural response EEG at time t from electrode n as a
convolution between two matrices: the input stimulus property s(f, t−τ) with
the EEG TRF w(f, τ, n). ǫ(t, n) represents the residual response not explained
by the model. Adapted from Crosse et al. (2016).

Forward modeling TRF linear regression was used with different sets of

linguistic and behavioral features. Phonological features based on place and

manner of articulation were adapted from Hayes (2011) and used as features

in the TRF model (Table 2.2). Behavioral information about the current trial

(perception, production, predictable, unpredictable), as well as normalized

EMG activity recorded from facial electrodes, was also included in the model.
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EMG was normalized by dividing the amplitude at each timepoint by the

maximum amplitude of the auxiliary electrode throughout the task.
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p - - + + - - - + - A - - + + + + +
b - - + + - - + + - æ - + + - + + +
t - + - + - - - + - O - - + + + + +
d - + - + - - + + - 2 - - + + + + +
k + - - + - - - + - @ - - + + + + +
g + - - + - - + + - @~ - - + + + + +
m - - + - - + + - + i + + - - + + +
n - + - - - + + - + I + + - - + + +
N + - - - - + + - + 1 + + - - + + +
P - - - + - - + + - E + + - - + + +
f - - + - + - - + - u + - - + + + +
v - - + - + - + + - U + - - + + + +
T - + - - + - - + - 0 + - - + + + +
D - + - - + - + + - aU - - + + + + +
s - + - - + - - + - oU - - + + + + +
z - + - - + - + + - eI + + - - + + +
S - + - - + - - + - aI + + - - + + +
Z - + - - + - + + - oI + - - + + + +
h - - - - + - - + -
r - + - - - - + - +
j + - - - - - + - +
l - + - - - - + - +
w + - + - - - + - +
tS - + - - + - - + -

dZ - + - - + - + + -

Table 2.2: Consonant and vowel feature matrices for stimuli used in TRF
modeling.

All 64 channels were used during mTRF modeling, with bad channels
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interpolated prior to modeling. Each channel was fit with a separate model

to predict the EEG signal in that channel. For all linguistic and behavioral

feature models, mTRFs were fit using a time delay of −300ms to 500ms. This

delay range encompasses the temporal integration times to similar responses

found in previous research (Hamilton et al. 2018), with an added negative delay

to encompass potential prearticulatory neural activity and activity reflecting

neural control of the motor response. The data were split into a training set

and a validation set, with 80% of sentences in the task being used for training

and 20% being used for validation. Training and validation sets were split by

unique sentence to avoid potential overfitting of the TRF by including the same

sentence in both sets. The weights (w) were fit using ridge regression on the

training set and a regularization parameter chosen by a bootstrap procedure

(n=10 bootstraps). The performance of the model was then calculated on

the held out test set, and the ridge parameter was selected at the value that

provided the highest average correlation performance across all bootstraps.

The ridge parameter was the same across all electrodes. Ridge parameters

between 10e-4 and 10e4 were tested in 30 logarithmically-scaled intervals.

2.8 Statistical Analysis

An advantage of naturalistic datasets is their size: it becomes possible

to perform many computational analyses. The analyses used in this thesis are

presented in this section.
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2.8.1 Event-Related Potential Evaluation

To determine the statistical significance of the event-related potential

analysis, a linear mixed-effects (LME) model was created and assessed using

the lmertest package (Kuznetsova et al. 2017) in R (Computing & Others

2013). LME models are well-suited to analysis of large EEG datasets due

to minimal assumptions made about the structure of the data and the abil-

ity to examine behavioral effects across subjects that accounts the high de-

gree of within-subject variation that exists in EEG datasets. Assessment of

differences in perception and production and differences in predictable and

unpredictable perception required two separate models to be fit, as the pre-

dictable/unpredictable split occurring in only half of the total trials (i.e., the

perception trials) would cause a single model to be unbalanced. For both

models, the behavioral distinction (perception & production; predictable &

unpredictable) of interest was used as a fixed effect while the individual sub-

ject was used as a random effect (Figure 2.4, Equations 2.2 and 2.3).

x ∼ Condition + (1|Subject) (2.2)

x ∼ Predictability + (1|Subject) (2.3)

x ∼ Epoch type + (1|Subject) (2.4)

Figure 2.4: Equations for linear mixed-effects models, where x is the response
variable. For Equations 2.2 and 2.3, response variables were peak to peak
amplitude of N1-P2 complex, N100 response amplitude/latency, and P200
response amplitude/latency. For Equation 2.4, the response variable was the
mean difference wave between the raw and CCA-corrected EEG response.
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Response variables focused on the N100 and P200 components (see

§1.3.1). The peak amplitude of the N100 component was used as a response

variable and obtained as the peak amplitude in the 80-150ms time window after

sentence onset (Lijffijt et al. 2009). The peak amplitude for the P200 was used

as a response variable in a similar fashion but was obtained from the 150-250ms

range. The response latency of both these components was also included as

response variables, obtained as the time in milliseconds at which the peak

amplitudes of these components occurred. The last response variable included

in analysis was the peak-to-peak amplitude of the N100/P200 components,

which was operationalized as the difference in peak amplitude between the

two. Responses from nine EEG channels were included in the models due

to their topographic relevance for the N100 component (see Figure 3.3 panel

F and Figure 3.4 panel F): F1, Fz, F2, FC1, FCz, FC2, C1, Cz and C2.

Full model parameterization and results for the perception/production LME

and predictable/unpredictable LME are summarized in Tables 3.2 and 3.3,

respectively.

An LME model was also used to evaluate the effectiveness of CCA cor-

rection at removing EMG from the data and preserving response integrity.

The root mean square (RMS) difference wave of the epoched responses aver-

aged across the same nine channels included in the above LME models was

used as the response variable. Difference waves were calcuated by subtracting

the channel-averaged response of the CCA-corrected data from the channel-

averaged response of the raw data at each epoch. Three sets of difference
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waves were created in this fashion corresponding to three sets of epochs: (1)

peak EMG activity from facial electrodes obtained via the MNE (Gramfort

et al. 2014) function mne.preprocessing.create eog epochs() (§2.2, Figure

2.1), (2) sentence onsets (§2.6) and (3) inter-trial click tone responses (§2.3).

All three sets of epochs were obtained from -200ms to +500ms relative to the

event. The LME model had a fixed effect of epoch type and a random effect of

subject (Figure 2.4, Equation 2.4). RMS values were used so response polarity

would not influence model evaluation.

As an additional confirmation of CCA efficacy, RMS values were ob-

tained from manually-annotated jaw EMG epochs in a single subject (OP0008).

A Wilcoxon signed-rank test implemented in the SciPy (Jones et al. 2001)

function scipy.stats.wilcoxon() was used to compare the mean of these

epochs across channels between the raw and CCA-corrected datasets. The

Wilcoxon signed-rank test is a nonparametric statistical test used to assess

differences in matched pairs of data (Woolson 2007). Because the behav-

ioral distinctions of interest come from the same dataset, it can be assumed

that their means do not follow a Gaussian distribution, which makes these

data well-suited for Wilcoxon signed-rank tests. p-values from this test were

false discovery rate-corrected for multiple comparisons using the negative Ben-

jamini/Yekutieli method (Benjamini & Yekutieli 2001).
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2.8.2 mTRF Model Evaluation

Evaluation of mTRF model performance was obtained by observing the

linear correlation coefficients (r) between the observed EEG response and the

EEG response predicted by the model. Signifance of these correlations was

obtained through within-subject6 channel-by-channel reshuffling, model refit-

ting and subsequent bootstrap tasks with 100 iterations each. The significance

threshold for each correlation was set as p < 0.01 (1/nboots). Between-model

significance of linear correlation coefficients was compared using the negative-

Benjimani-Yekuteli-corrected Wilcoxon signed-rank test used to assess CCA

artifact correction efficacy described above. This nonparametric test was also

used to calculate the significance of differences of perception/production (Fig-

ure 3.7) and predictable/unpredictable (Figure 3.8) feature weights at individ-

ual timepoints.

6It is important that significance correlations are obtained on a within-subject basis due
to the large individual variations in baseline that can occur in EEG datasets. This also
explains why some channels in Figure 3.6 appear to have insigificant correlation values that
are greater than significant correlation values.
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Chapter 3

Results

3.1 Validation of Artifact Correction Techniques

Because studies of speech production using naturalistic stimuli above

the word level are rare, it is important to confirm that EMG artifact correc-

tion techniques were successful. Because there is no guaranteed method of

confirming an artifact correction technique is both successful and accurate, a

custom method of confirming that both Type I (false positive) and Type II

(false negative) error were absent from the dataset was developed.

3.1.1 Preservation of Neural Responses after CCA Artifact Cor-
rection

In the context of this dataset, a lack of Type I error means that neu-

ral signal is not falsely identified as EMG and removed from the dataset. To

confirm signal integrity, well-studied neural components related to auditory

processing were observed before and after CCA correction. The N1-P2 re-

sponse is a low-level neural response to auditory stimuli that is automatic

and not affected by cognition (Lightfoot 2016). If EEG was falsely removed

during CCA artifact correction, the N1-P2 response would likely be degraded

when CCA-corrected data are compared to pre-CCA-corrected data. Figure
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3.1 (panels A,D) demonstrates that the N1-P2 complex is preserved after CCA

correction in ERP data epoched to the inter-trial broadband click tone. The

integrity of task-related ERP (Figures 3.3, 3.4) responses provides further cor-

roboration that neural signal is not falsely removed from the dataset.

Figure 3.1: CCA correction removes EMG artifact without significantly af-
fecting auditory responses, as shown by comparison of event-related potential
activity between raw data (blue) and CCA-corrected data (red). The top row
of panels (A,B,C) shows responses in a single subject (OP0008) while the bot-
tom row of panels (D,E,F) shows grand average responses in 17 subjects. Left
column (A,D): ERP responses epoched to the inter-trial click tone. Middle
column (B,E): ERP responses epoched to EMG activity recorded from facial
electrodes. Right column (C,F): ERP responses epoched to the onset of sen-
tence articulation. All panels include data averaged across nine electrodes:
F1, Fz, F2, FC1, FCz, FC2, C1, Cz, and C2.

3.1.2 Removal of EMG activity after CCA Artifact Correction

A lack of Type II error in this dataset means that EMG activity is

accurately removed from the dataset. EMG activity associated with articula-
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tion was identified automatically using activity from the facial electrodes (see

Figure 2.1, §2.8). A comparison of EMG-epoched responses between the raw

dataset and the CCA-corrected dataset showed a large reduction in amplitude

corresponding with the onset of EMG activity, which suggests that CCA was

successful in removing EMG activity from the dataset (Figure 3.1, panels B,E).

A similar comparison using sentence-onset-epoched instead of EMG-epoched

responses showed that there is a large reduction in amplitude corresponding

with sentence articulation (Figure 3.1, panels C,F). Manual inspection of 109

jaw clench artifacts in an individual subject (OP0008) demonstrated that EMG

activity not associated with peak activity from facial electrodes or sentence

production is also removed from CCA-corrected data (p < 0.0001, Wilcoxon

signed-rank test). Linear mixed effects models comparing sets of root mean

square difference waves are summarized in Table 3.1 and Figure 3.2. LME

modeling of difference waves revealed a significant contrast between the click

responses and EMG/sentence responses but no significant contrast between

EMG and sentence responses, suggesting that EMG artifact correction is be-

ing applied to peak EMG activity and sentence-level epochs but not to click

responses. This result is consistent with the simultaneous removal of EMG

artifact and preservation of neural responses. Overall there was an average of

close to zero difference in amplitude of the click response before and after arti-

fact correction. On the other hand, EMG epochs and sentence epochs showed

reductions in amplitude following CCA, likely related to removal of artifact

(Figure 3.2).
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Epoch Type Estimated marginal mean 95% Confidence interval

Click -1.43µV -53.57 to 50.71µV
EMG 51.50µV -1.63 to 104.62µV
Sentence 40.27µV -11.21 to 91.74µV

Contrast Estimated marginal mean p value

Click−EMG -52.93±11.47µV < 0.0001
Click−Sentence -41.70±8.73µV < 0.0001
EMG−Sentence 11.23±10.31µV 0.52

Table 3.1: Linear mixed-effects model results comparing three sets of mean
difference waves between raw and CCA-corrected data.

Figure 3.2: Plot of estimated marginal means of difference wave amplitude
split by epoch type. The shaded area represents the confidence interval for
each epoch type’s estimated marginal mean calcuated via Kenward-Roger ap-
proximation.

40



3.2 Event-Related Potential Results

To examine differences between speech production and perception and

differences between unpredictable and predictable speech perception, two meth-

ods were used. The first, event-related potential (ERP, §2.6) analysis, was used

to compare sentence-level responses between behavioral conditions.

3.2.1 Differences Between Speech Production and Perception

Previous research has demonstrated a suppression effect in speech pro-

duction relative to perception at the word and syllable level (Okada et al.

2018; Houde & Nagarajan 2011; Toyomura et al. 2020; Behroozmand & Larson

2011), as well as a general suppression of self-generated compared to externally-

generated sounds (Martikainen et al. 2005; Brumberg & Pitt 2019). To exam-

ine if responses to speech production are suppressed in naturalistic contexts,

differences between the speech production and speech perception components

of the task were compared using ERP analysis.

Comparison of perception and production trials is summarized in Fig-

ure 3.3. Data were epoched to sentence onset for analysis: for production trials,

this corresponds to the onset of articulation; for perception trials, this corre-

sponds to the onset of the first presented phoneme in the trial sentence. Topo-

graphic EEG activity in response to sentence onset revealed a frontal/central

ROI of activity in both the perception condition at 100ms and the production

condition at -100ms.
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Figure 3.3: Sentence-level ERP activity demonstrates relative suppression of
production (blue) compared to perception (green) trials. Panel A: Grand av-
erage ERP plot of activity epoched to sentence onset averaged across 64 chan-
nels, n=19 subjects. B,C: Time ranges for N100(B) and P200(C) components
in-between shaded gray areas. D,E: Topographic plots of perception (D) and
production (E) activity. F: Locations of nine frontal/central region of interest
(ROI) electrodes on an EEG montage. G: Grand average plots comparing
perception and production ERP activity in 19 subjects split by frontal/central
ROI channels.

The N1-P2 complex (see §3.1.1) is present at the sentence level in both

production and perception conditions, but relatively reduced in amplitude for

the production trials. Linear mixed-effects model results, summarized in Table

3.2, suggest a significant difference in the amplitudes and latencies of both the

N100 and the P200 components between perception and production conditions,

as well as the peak-to-peak amplitude between the N100 and P200 components.
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Amplitudes were reduced during production and response latencies decreased

during production.

Response
Variable

Fixed
Effects

Random
Effects

Perception
estimated
marginal
mean

Production
estimated
marginal
mean

95%
Perception
confidence
interval

95%
Production
confidence
interval

t ratio p value

Peak to peak
amplitude (µV)

Condition Subject 12.1 8.1 9.8 to 14.3 5.9 to 10.3 25.6 < 0.001

N100
amplitude (µV)

Condition Subject -6.0 -3.7 -7.0 to -5.0 -4.7 to -2.7 -15.6 < 0.001

N100
latency (s)

Condition Subject 0.116 0.114 0.115 to
0.117

0.113 to
0.115

3.5 < 0.001

P200
amplitude (µV)

Condition Subject 6.0 4.3 4.6 to 7.3 2.9 to 5.7 11.2 < 0.001

P200
latency (s)

Condition Subject 0.205 0.202 0.204 to
0.207

0.201 to
0.204

4.2 < 0.001

Table 3.2: Linear mixed-effects model results comparing speech perception
and production.

Additionally, there was an increase in activity prior to stimulus onset

(∼ -100ms) for the production condition relative to the perception condition.

This increase in pre-articulatory activity could be a component of feedforward

speech motor control or motor speech programming (see §4.2).

3.2.2 Differences Between Predictable and Unpredictable Speech
Perception

Differences between predictable and unpredictable speech perception

were compared in a similar fashion to the differences between perception and

production (see §3.2.1). Overall, the differences between these two trial types

were less pronounced than the differences between perception and production

trials. See §4.3 for an interpretation of this difference.
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Comparison of predictable and unpredictable perception trials is sum-

marized in Figure 3.4. Data were epoched to the onset of the first perceived

phoneme in the trial sentence. The same frontal/central ROI shown in Figure

3.3 was present in the plots, although the magnitude of response was larger

for unpredictable perception.

Figure 3.4: ERP comparison between predictable (yellow) and unpredictable
(magenta) speech perception trials. Panel A: Grand average ERP plot of ac-
tivity epoched to sentence onset in 19 subjects. B,C: Time ranges for N100(B)
and P200(C) components in-between shaded gray areas. D,E: Topographic
plots of predictable (D) and unpredictable (E) perception activity. F: Loca-
tions of nine frontal/central ROI electrodes on an EEG montage. G: Grand
average plots comparing predictable and unpredictable ERP activity in 19
subjects split by frontal/central ROI channels.

Linear mixed-effect model results, summarized in Table 3.3, suggest
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there was no significant difference in N100 and P200 amplitudes between pre-

dictable and unpredictable perception trials; however, peak-to-peak amplitude

and N100 latency differed significantly between predictable and unpredictable

trials. To further investigate this result, a series of Wilcoxon signed-rank

tests with negative Benjimani-Yekuteli false discovery rate-correction compar-

ing N100-P200 peak-to-peak amplitude was performed on a within-subject

basis. Three individual subjects demonstrated a suppression of peak-to-peak

amplitude at a p = 0.05 significance level; however, there was a high degree of

inter-subject variation in these responses, plots of which have been included

in Appendix 1.

Response
Variable

Fixed
Effects

Random
Effects

Predictable
estimated
marginal
mean

Unpredictable
estimated
marginal
mean

95%
Predictable
confidence
interval

95%
Unpredictable
confidence
interval

t ratio p value

Peak to peak
amplitude (µV)

Predictability Subject 11.7 12.2 8.5 to 15.0 9.0 to 15.5 -2.1 0.03

N100
amplitude (µV)

Predictability Subject -5.8 -6.1 -7.5 to -4.1 -7.8 to -4.5 1.5 0.12

N100
latency (s)

Predictability Subject 0.117 0.115 0.116 to
0.118

0.114 to
0.117

2.3 0.02

P200
amplitude (µV)

Predictability Subject 5.9 6.1 4.2 to 7.6 4.3 to 7.8 -0.9 0.37

P200
latency (s)

Predictability Subject 0.205 0.205 0.203 to
0.207

0.203 to
0.207

0.21 0.84

Table 3.3: Linear mixed-effects model results comparing predictable and un-
predictable speech perception trials.
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3.3 Multivariate Temporal Receptive Field Model Per-
formance

To understand how phonological information is modulated by the be-

havioral context of the task (i.e., in production versus perception, predictable

versus unpredictable contexts) while controlling for the possible presence of

residual EMG, I fit a series of multivariate temporal receptive field models.

Multivariate temporal receptive field (mTRF) modeling serves to provide a

model of how specific features were encoded in the EEG signal. Model per-

formance was evaluated using the linear correlation coefficient (r) between

the EEG activity predicted by the model and the actual EEG response. To

evaluate how the inclusion/exclusion of specific features affected model perfor-

mance, five models were run and evaluated using identical methods (see §2.7).

Figure 3.5 provides a summary of comparative model performance. The “full”

model (Model 1) contained 14 phonological features, 4 binary features encod-

ing trial information (perception, production, predictable, unpredictable) and

normalized EMG activity from facial electrodes for a total of 19 features. If

Model 1 did not perform significantly different from the other models, the in-

terpretation is that speech features were encoded similarly between perception

and production. Model 2 is identical to Model 1 but has two additional sets

of phonological features split by perception and production trials for a total

of 47 (19 + 14 + 14) features. If Model 2 outperformed other models, the

interpretation is that phonological features were encoded differently between

perception and production. Model 3 and Model 4 were identical to Model 1
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but with two binary features removed: predictable/unpredictable and percep-

tion/production, respectively, for a total of 17 (19−2) features. If Model 3 and

4 performed as well as other models, the interpretation is that the modality

(perception/production) and predictability of speech were not encoded by the

EEG response. Model 5 is identical to the full model but with two additional

features corresponding to the first phoneme of perception and production tri-

als in an effort to see how onset responses contribute to the model’s predictive

power, for a total of 21 (19 + 2) features. The differences in Model 2-5 per-

formance from the full model (Model 1) were evaluated (see §2.8). Models 2,

3 and 4 performed significantly different from the full model at a p < 0.01

significance threshold, while Model 5 did not (p = 0.21). These results sug-

gest that phonological features were encoded differently during perception and

production (Model 2), predictability of speech perception was encoded by the

EEG response (Model 3), modality (perception/production) of speech was en-

coded by the EEG response (Model 4), and sentence-onset phonemes were not

encoded differently by the EEG (Model 5).
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Figure 3.5: Regression schematic and model comparison. Panel A: Regres-
sion schematic displaying all features in Model 1 for an example trial color-
coded by production (blue) and perception (green). A horizontal dotted line
divides phonological features (bottom) from task-related features and normal-
ized EMG (top). Panels B,C,D,E: Scatterplots comparing correlation values
between Model 1 and the other four models assessed.
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Model
Number

Number of
Features

Feature Contents Performance Interpretation

1 (full) 19 14 phonological, 2 binary
perception / production, 2
binary predictable / unpre-
dictable, 1 normalized EMG

Speech features are encoded
similarly in perception and
production

2 47 14 phonological, 14 phono-
logical (perception only),
14 phonological (production
only), 2 binary perception
/ production, 2 binary pre-
dictable / unpredictable, 1
normalized EMG

If this outperforms the full
model, phonological features
are encoded differently during
perception and production

3 17 14 phonological, 2 binary
perception / production, 1
normalized EMG

If this performs as well as
the full model, stimulus pre-
dictability during speech per-
ception does not contribute to
the EEG response

4 17 14 phonological, 2 binary
predictable / unpredictable,
1 normalized EMG

If this performs as well as the
full model, differences between
speech production and percep-
tion do not contribute to the
EEG response

5 21 14 phonological, 1 bi-
nary perception trial
first phoneme, 1 binary
production trial first
phoneme, 2 binary percep-
tion/production, 2 binary
predictable / unpredictable,
1 normalized EMG

If this outperforms the
full model, sentence-initial
phonemes are encoded differ-
ently than other phonemes

Table 3.4: Description of assessed models.

The full model performance was also evaluated per channel to observe

any topographic differences in encoding accuracy. Linear correlation coeffi-

cients (r) and significance values were obtained at each channel (see §2.8).
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At each channel, subjects who had significant and insignificant p-values at

a p < 0.01 significance threshold were tallied (Figure 3.6). Overall, frontal

and central electrodes demonstrated higher linear correlation coefficients and

a greater proportion of significant correlations compared to parietal and occip-

ital electrodes. There did not appear to be an effect of hemispheric laterality.

Figure 3.6: Histogram tallying individual subjects’ correlation values for Model
1 split by channel. Bins are color-coded according to significance threshold.
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3.3.1 Differences Between Speech Production and Perception

As described in Section 3.3, comparing mTRF models that include or

exclude stimulus features that contrast between the perception and produc-

tion components of the task (i.e., Model 1 versus Model 2) suggested that

phonological features during speech production and perception were differen-

tially encoded. A significant difference in model performance with (Model 1)

and without (Model 4) the inclusion of binary perception/production features

(Figure 3.5) also suggested that a distinction between these trial types played

a substantial role in the encoding of EEG activity during the task.

To further examine differences in how perception and production are

encoded by the EEG, mTRF model weights were examined. In an mTRF

model, the weight w of a feature f at a given electrode n provides a measure of

how much the feature f contributes to the predicted EEG response (see Figure

2.3 and §2.7). By examining weight differences at different delays in the model,

one can construct a visualization of how much individual features contribute

to the predicted EEG activity over time. Feature weights for production and

perception show a divergent timecourse, with production weights contributing

more to model performance before articulation. Delays at which there is a

significant difference between perception and production weights are indicated

in Figure 3.7 with a black line at the bottom of each channel’s plot.
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Figure 3.7: Production (blue) versus perception (green) mTRF weights relative
to onset of neural activity at the phoneme level by channel. Black horizontal
lines indicate delays at which there is a significant difference between the
weights as determined via Wilcoxon signed-rank test.

3.3.2 Differences Between Predictable and Unpredictable Speech
Perception

In a similar fashion to perception and production trial weights (see

§3.3.1), the timecourse of predictable and unpredictable perception trial weights

was examined (Figure 3.8). When compared to the contrast between percep-
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tion and production weights, the predictable and unpredictable weights had

less of a difference in timecourse, although unpredictable weights did show an

increase before onset of neural activity, potentially reflecting the block design

of the experiment allowing participants to anticipate predictable trials (Fig-

ure 3.8, channels FC1, C1, CP1, P1). Interestingly, the channels with larger

standard error margins followed a similar pattern to the standard error mar-

gin of weights compared in Figure 3.7: midline channels (Fz, FCz, Cz, CPz,

Pz, POz) and right/left-lateralized channels (FT9, F8, FT8) had the largest

standard error margins.
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Figure 3.8: Predictable (yellow) versus unpredictable (magenta) speech per-
ception mTRF weights relative to onset of neural activity at the phoneme level
by channel. Black horizontal lines indicate delays at which there is a signif-
icant difference between the weights as determined via Wilcoxon signed-rank
test.

Although N100/P200 components suggest that there is no significant

difference between predictable and unpredictable speech perception in this

dataset (see §3.2.2), a significant peak-to-peak amplitude difference and sig-

nificant performance difference between models that include (Model 1) and

54



exclude (Model 3) binary predictable/unpredictable perception features sug-

gest there is still a trend towards suppression of predictable speech perception

compared to unpredictable speech perception.
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Chapter 4

Discussion

4.1 EMG Artifact Correction in Naturalistic Speech Pro-
duction

EMG artifact was perceived by speech production EEG researchers as

an insurmountable hurdle for a long period of time (see §1.3.2.3). While stud-

ies occasionally successfully analyze speech production data after correcting

for EMG artifact, the procedure is far from standardized (Chen et al. 2019;

Shackman et al. 2009; Jiang et al. 2019; Islam et al. 2016; Fargier et al. 2018)

and analysis of these results is only done at the single-word level (Fargier

et al. 2018; Vos et al. 2010; Behroozmand & Larson 2011; Ganushchak et al.

2011). The problem is further complicated by the lack of ground truth in arti-

fact correction, meaning there is not a guaranteed method of confirming both

the success and accuracy of an artifact correction technique. In this thesis,

I present the application of an EMG artifact correction technique known as

Canonical Correlation Analysis (CCA) to naturalistic, sentence-level speech

production and demonstrate ways to confirm the effectiveness and accuracy of

the technique (see §2.4.1). Analysis of event-related potential (ERP) data in

raw EEG data and CCA-corrected EEG data reveals a significant reduction in

artifact for CCA-corrected data relative to EMG-related activity recorded from
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facial electrodes and task-related activity. These results confirm that EMG ac-

tivity is being reduced from the data (see §3.1). A nonsignificant reduction in

amplitude of responses to inter-trial click tones between CCA-corrected EEG

and non-CCA-corrected EEG suggests that the integrity of the neural signal

is preserved after CCA.

These techniques are sufficient for validation of CCA artifact correction

techniques in this naturalistic data set, but potential additional analyses of

CCA efficacy are discussed in Section 4.4.1.

4.2 Differences Between Speech Production and Speech
Perception

Differences between speech production and perception were assessed

using a linear mixed-effects (LME) model and a multivariate temporal re-

ceptive field (mTRF) model. The LME model included the modality of the

trial (perception, production) as a fixed effect and the subject as a random

effect. Peak to peak amplitude of the N100 and P200 components, as well

as the amplitude and latency of the N100 and P200 components, were used

as response variables. All response variables examined differed significantly

between perception and production trials at a p < 0.05 significance rate. This

difference is characterized by a reduction in amplitude of the N100 and P200

components in speech production relative to speech perception. This ampli-

tude reduction is likely a reflection of speaking-induced suppression, a com-

monly observed phenomenon in speech production where self-generated audi-
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tory stimuli are reduced in amplitude during speech production (Martikainen

et al. 2005; Behroozmand & Larson 2011; Brumberg & Pitt 2019; Cao et al.

2017). Furthermore, I attempted to elaborate on the nature of suppression

by using mTRF modeling: is the suppression seen during speech production

a general reduction of response amplitude or is certain information encoded

during speech perception not encoded during speech production? The sig-

nificant difference in performance between a model that did not include a

perception/production distinction (Model 4) and one that did (Model 1) sug-

gests that differentiating between these modalities is relevant to the recorded

EEG response. Furthermore, a model that explicitly differentiated phonolog-

ical features between perception and production (Model 2) performing differ-

ently from one that does not (Model 1) suggests that phonological features are

encoded differently between perception and production.

4.3 Differences Between Predictable and Unpredictable
Speech Perception

Differences between predictable and unpredictable speech perception

were examined using a linear mixed-effects (LME) model and a multivariate

temporal receptive field (mTRF) model. The LME model included the stimu-

lus predictability as a fixed effect and the subject as a random effect. Multiple

response variables were evaluated using this model (see §3.2.2), and only peak

to peak amplitude of the N100/P200 components (p = 0.03) and N100 latency

(p = 0.02) demonstrated a significant difference between predictable and un-
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predictable sentences. This effect is reduced when compared to the production

versus perception LME (see §3.2.1), as the production versus perception LME

had many more significant response variables. The predictable and unpre-

dictable stimulus features in the mTRF model also appeared to have a less

divergent timecourse than the comparison between production and perception

weights (see §3.3.1 & §3.3.2). However, the fact that a model that excluded pre-

dictable and unpredictable stimulus features (Model 3) performed significantly

worse than a model that included them (Model 1) suggests that predictability

contributes in some way to the recorded EEG activity (see §3.3). Interestingly,

a model that did not separately encode sentence-initial phonemes (Model 1)

did not perform significantly different from a model that did (Model 5), which

suggests that onset responses are not differentially encoded in the EEG, at

least in this task. This is in contrast to the onset and sustained response pro-

files (Hamilton et al. 2018) observed in an ECoG study of sentence perception.

As onset and sustained response profiles were both localized to the superior

temporal gyrus, it is possible EEG lacks the spatial resolution to properly dif-

ferentiate between these response profiles. Additionally, production data were

included in Model 5, while (Hamilton et al. 2018) solely used perception data,

which could explain the difference in results.

The presence of a relatively weaker significant result comparing pre-

dictable and unpredictable speech perception has implications for Hypothesis

3. The reduced significant difference between conditions could be due to adja-

cent competing functional regions averaging out the neural response to these
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trials. Areas of the middle temporal gyrus (MTG) have been previously impli-

cated in speech monitoring during production (Zheng et al. 2010; Gauvin et al.

2016), with studies showing a reduction in MTG activity in unpredictable con-

texts. In altered auditory feedback studies, feedback becomes unpredictable

when it is altered to a degree that makes it no longer recognizable to the partic-

ipant as being internally generated (Behroozmand & Larson 2011; Hashimoto

& Sakai 2003). A crucial distinction between altered auditory feedback studies

and the study presented in this thesis is that feedback in altered auditory feed-

back studies is immediate, while feedback in this study was delayed due to the

“produce then listen to playback” design of the experiment. The MTG has also

been implicated in resolving competing stimuli during speech perception tasks,

which suggests it more generally plays a role in feedback situations where the

perceived stimulus mismatches the expected stimulus provided by the efference

copy (Ashtari et al. 2004; Luthra et al. 2019). Another piece of evidence for the

MTG being involved in this auditory process comes from research conducted

in people with schizophrenia. Multiple studies have shown abnormal MTG

activity in people with schizophrenia who have auditory hallucinations, the

mechanism for which is theorized to be an inability to successfully determine

if speech is internally or externally produced (McGuire et al. 1995; Woodruff

et al. 1997). This suggests that a critical part of normal MTG functioning is

processing self-produced speech.

Conversely, regions of the superior temporal gyrus (STG) have been

implicated in general speech processing as well as selectively responding to
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unpredictable stimuli (Fitzgerald & Todd 2020; Astheimer & Sanders 2011;

Ding et al. 2016; Cao et al. 2017). The anatomical proximity of these regions is

not discernible using the low spatial resolution of EEG. If these areas are truly

active during opposite experimental conditions (MTG for predictable speech

perception and STG for unpredictable speech perception), then it is possible

these regional differences are cancelling out any amplitude changes that could

be observed in a grand average ERP analysis. Further explanations for the

lack of a result across these conditions are discussed in Section 4.4.2.

4.4 Limitations

4.4.1 EMG Artifacts

Limitations arise when exploring a new methodological space, such as

the study of naturalistic speech production using EEG. A large issue for the

interpretation of these results is the lack of ground truth data in EEG: because

it is impossible to observe the neural components that make up the electroen-

cephalogram individually, it is always a possibility that a substantial amount

of artifact remains in the data. While it is true that this is a fundamental limi-

tation of EEG as a method, it is especially salient as a limitation in this study,

as the overt production nature of the task inherently causes large amounts of

EMG artifact to be present in the EEG.

Although techniques that confirm the accuracy and effectiveness of

CCA artifact correction in removing EMG artifact and preserving signal in-

tegrity are presented in this study, additional reliability checks could be em-
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ployed by a skeptic researcher. A correlation between the degree of N100/P200

suppression in speech production and the amplitude of the pre-articulatory re-

sponses discussed in Section 3.2.1 would strengthen the argument that neural

responses are preserved in CCA-corrected data, as the observed suppression

is theorized to be related to efference copy generation during pre-articulatory

motor speech planning. Pre-articulatory EEG activity would not be affected

by EMG artifact while the N100/P200 amplitudes would, so a lack of a cor-

relation between the two would demonstrate N100/P200 amplitude reduction

in the production condition was not due to efference copy-related suppression

but instead due to CCA subtracting neural activity from the EEG signal. Sim-

ilarly, examining within-subject N100 amplitude could serve as a check that

EMG artifact is removed in the CCA-corrected data. The N100 component is

more likely to be affected by EMG activity due to its temporal proximity to

the onset of articulation than later neural components, so its integrity could

serve as a marker of EMG artifact correction; however, this analysis is not

included in this thesis. To quantify N100 integrity, one could compare the

difference in mean amplitude of the N100 before and after artifact correction

to later components such as P200, and a lack of significant difference in ampli-

tude reduction would suggest the N100 is preserved equally. Another way to

quantify N100 integrity would be comparing post-correction perception and

production N100 peak amplitudes using nonparametric statistics: a lack of

significant difference between the two would suggest N100 preservation after

artifact correction.
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A possible surface-level interpretation of the reduction in amplitude of

N100/P200 components in production trials relative to perception trials (see

§3.2.1) is that artifact correction techniques asymmetrically affected produc-

tion relative to perception due to speech production-related EMG artifact.

Such an interpretation is reliant on the presence of Type II error in the cor-

rected dataset. The preservation of the N1-P2 response to inter-trial broad-

band click tones (see §3.1.1) suggests that the reduction in amplitude seen in

sentence-level ERP analyses is not due to overcorrection of the data.

4.4.2 Stimulus Predictability

The effect size between predictable and unpredictable speech percep-

tion is less than what I expected when designing this study. One potential

explanation is that activity from two adjacent but functionally different re-

gions of the temporal cortex are cancelling each other out during the averag-

ing process. Some neural populations demonstrate an increase in activity to

errorful/unpredictable stimuli (Fitzgerald & Todd 2020; Bishop & Hardiman

2010; Hawco et al. 2009) while other neural populations instead have shown

suppression to errorful/unpredictable stimuli (Niziolek et al. 2013; Zheng et al.

2010; Gauvin et al. 2016). If this is the case, then the low spatial resolution of

EEG is an inherent limitation to this study. It is possible that EEG lacks the

spatial resolution to have isolated these two competing regions/patterns of ac-

tivation in the context of this task. Future research that incorporates invasive

electrocorticography would preserve the necessary high temporal resolution of
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EEG for speech production research but allow for examination of individual

cortical structures’ contributions to the recorded response.

The lack of a significant difference between predictable and unpre-

dictable speech perception stimuli may be also due to the scale of the task.

While using naturalistic stimuli in neurolinguistic experiments has many ben-

efits over using more constrained stimuli, one potential limitation of naturalis-

tic stimuli is an inability to operationalize and isolate specific neural responses

using classic “independent variable, dependent variable” experimental design.

Many studies using naturalistic stimuli instead opt for computational meth-

ods that do not make assumptions about how the recorded data is organized.

That is to say, a hypothesis about how neural responses differ within two

very constrained conditions (i.e., predictable and unpredictable) may not be

appropriate for a study using naturalistic stimuli.

Another consideration is that a robust suppression of predictable trials

was not observed because the task, although using naturalistic stimuli for EEG

research standards, was still relatively constrained compared to self-generated

conversational speech. Reading scripted sentences off an iPad is a less natu-

ralistic task than effortlessly conversing with other people as a part of daily

life. However, studies that have used much less naturalistic stimuli, such as

vocalization (Behroozmand & Larson 2011; Hawco et al. 2009), single words

(Zheng et al. 2010; Astheimer & Sanders 2011) and pressing a button to play a

sound (Martikainen et al. 2005) have demonstrated suppression to predictable

stimuli, which suggests that abstraction from natural speech is not an expla-
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nation for the weaker difference between predictable and unpredictable trials.

These studies also differ in whether they distribute unpredictable trials in a

random manner (Behroozmand & Larson 2011; Hawco et al. 2009; Astheimer

& Sanders 2011) or in a predictable-unpredictable block design, similar to what

this study used (Zheng et al. 2010; Martikainen et al. 2005). Previous studies

that find significiant differences between predictable and unpredictable stim-

uli using a block design suggest that the block design of this study is not the

reason for fewer significant differences between predictable and unpredictable

trials when compared to perception versus production trials.

4.5 Future Directions

One benefit to a study using naturalistic stimuli is that large quantities

of data compared to more constrained tasks can be gathered (Hamilton &

Huth 2020). This opens the door for many future analyses to be performed

on this dataset.

4.5.1 Levels of Linguistic Representation and Other Parameters

The ERP analyses present in this thesis are restricted exclusively to the

sentence level; however, word and phoneme-level timing information was also

collected (see §2.5). This presents many different possible analyses, for ex-

ample, does production-related suppression exist at smaller units of linguistic

representation? Additionally, Hamilton et al’s work on onset and sustained re-

sponses (Hamilton et al. 2018) which motivated the predictable/unpredictable
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condition split focused on the sentence level, studies examining voice onset

time have found onset-specific responses at the word level (Fargier et al. 2018;

Luthra et al. 2019). Although stimulus predictability was not manipulated

at the word level in this experiment, it is possible that examination of ERP

responses to words and phonemes could differ by other behavioral modifiers

present in the task, such as phonetic or morphosyntactic content.

Returning to sentence-level ERP analysis, there were multiple neural

components that appeared to differ between perception and production (see

§3.2.1 and Figure 3.3). Prearticulatory activity was increased for production

relative to perception and could be reflective of some aspect of motor speech

planning or programming (such as the efference copy), but this effect was not

a part of my hypotheses and therefore was not quantitatively analyzed in this

thesis. Neural activity after the P200 component also appears to be divergent

between production and perception, with production trials having an increase

in amplitude compared to perception. Incorporating a wider range of time

series into the linear mixed effects models used in this thesis could provide

insight about which later components are potentially involved in differences

between speaking and listening.

4.5.2 Error Analysis

Because the findings for differences between predictable and unpre-

dictable stimuli were not robust, I am interested in studying other possible

causes of suppression within the context of this dataset. One potential cause
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is errorful speech production: neural responses to errorful speech have been

shown to be different from errorless speech in previous studies (Niziolek et al.

2013; Hawco et al. 2009; Gauvin et al. 2016; Masaki et al. 2001). Due to the

complexity of sentences used as production stimuli in this task, (see §2.3) er-

rors are present to some degree in most participants. Additionally, because

production stimuli are used to create perception stimuli, any produced errors

are also present in the perception condition. Analyzing this subset of errorful

trials using similar ERP and mTRF techniques presented in this thesis could

yield interesting observations about how the brain monitors and responds to

inaccurate speech.

4.5.3 Decoding Speech Features from EEG

As stated above, the size of this dataset allows for implementation of

computational analyses, such as mTRF modeling (see §1.3.3). mTRF models

attempt to explain how neural populations encode stimulus features; however,

decoding models are increasing in popularity in the field of computational au-

ditory neuroscience (Cooney et al. 2018; Pasley et al. 2012; Moses et al. 2016),

motivated in large part by brain-computer interface (BCI) research. Because

studying sentence-level speech production with EEG is a novel method, at-

tempting to decode various linguistic features using this dataset could serve

as a proof-of-concept for those wishing to use EEG-based speech BCI systems

in naturalistic contexts.
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4.5.4 Naturalistic Speech Production in Communication Disorders

Lastly, as mentioned in the introduction, feedback speech motor control

is theorized to break down in multiple psychological and communication disor-

ders (Heinks-Maldonado et al. 2007; McGuire et al. 1995; Woodruff et al. 1997;

Ballard et al. 2018; Daliri et al. 2018; Toyomura et al. 2020; Hoffman 2014;

Parrell et al. 2017), including schizophrenia, apraxia of speech, fluency disor-

ders, and neurodegenerative diseases such as Parkinson’s disease. Treatment of

neurogenic communication disorders in particular often focuses on functional

aspects of communication, that is, how a disorder prevents an individual from

participating in the activities of daily living (Ingham et al. 2012; Chapey et al.

2000; Stokes 2011). As treatment goals shift from more constrained to more

naturalistic, advances in the treatment of such disorders could be benefitted

by their study in more naturalistic contexts, such as the ones presented in

this thesis. Understanding how the dynamics of speech production function at

higher levels of linguistic representation (such as sentences) could provide more

direct insights about how disorders such as stuttering and apraxia of speech

impact the functional communication these individuals use in daily life.
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Chapter 5

Conclusion

A suppression of production trials relative to perception trials is indica-

tive of speaking-induced suppression. This result, alongside mTRF modeling

demonstrating the preservation of phonological tuning in speech production,

points to the efference copy present in models of motor speech control as a

potential reason for an amplitude reduction in production trials. However,

speaking-induced suppression does not appear to be caused solely by stim-

ulus predictability, as predictable and unpredictable speech perception were

significantly different for fewer response variables than speech production and

perception.

Application of CCA to sentence-level EEG demonstrates it is possi-

ble to preserve integrity of neural responses while simultaneously removing

EMG artifact. Neuroscientists interested in the study of language have avoided

studying naturalistic speech production using EEG because of the fear, albeit

a valid fear, of EMG artifact rendering the data too noisy to analyze. The

results presented in this thesis have implications for those looking to study

the neural basis of communication disorders that affect speech production in a

more naturalistic context, those looking to use EEG to create brain-computer
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interfaces for speech production, or any researchers interested in utilizing nat-

uralistic stimuli in speech production studies.
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Appendix 1
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Individual Subject Predictability Plots

Figure 1.1: ERP comparison between predictable (yellow) and unpredictable
(magenta) speech perception trials separated by individual subject. Activity
is epoched to sentence onset.
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