

Behavioral and neuroanatomical characterization of stimulation-induced speech arrest

(A) shows 3 example stimulation sites on an MNI template brain. Introduction (B) shows site locations on an intraoperative craniotomy. (C) shows waveforms of the patient's speech before, during, and For decades, cortical stimulation mapping (CSM) has served after stimulation, aligned to onset of stimulation. Grey bars as the "gold standard" for identification of eloquent cortex before indicate duration of stimulation. Colored portions of waveforms resective neurosurgery^[1]. **Speech arrest (SA)**, the cessation of indicates response times (= speech onset - stimulation onset). speech output while the patient performs a stereotyped task such as counting, is often considered the functional mapping of Broca's Α. area. However, definitions of SA vary considerably among historical accounts of SA^[2,3]. This work aimed to establish a comprehensive and quantitative behavioral and neuroanatomical characterization of speech arrest and other speech disruptions that arise from intraoperative CSM. Methods С. Stimulation Onset • N = 34 epilepsy, glioma, and cavernous malformation patients • Inclusion criteria: . Awake left hemisphere craniotomy involving CSM. 2. First resective brain surgery. 3. Fluent speaker of English. eighteen twenty one nineteen twenty Patients counted from one to thirty while surgeon administered direct electrical stimulation to cortex. • Errors were classified as speech arrest (SA), a motor error (ME), or a lexical error. • Standard CSM tasks (sensorimotor mapping, picture naming, repetition) were also performed. twenty one twenty three twennmtwo twenty four 1, 2, ... 29, 30 (SA) Monday ... Friday January ... December 1 sec. ... four three six five

Types and quantities of observed stimulation-evoked errors with corresponding examples of patients' self-reports:

Error type	Example target	Example response	Example self-reports		
Speech Arrest	four	four	"I couldn't say thirty seven." "It was hard to keep going." "I can hear, but I can't get the words out." "You're slowing me down, man."		
Motor Error	twenty-two	twennmtwo	"On the right side, it was my tongue. "I had a buzz or a feeling down my throat." "My jaw."		
Lexical Error	twenty-nine	twenty-four	"Sorry, I got a little stuck."		
Phonological paraphasia	thirteen	thirskrin	N/A		

Garret Kurteff^{a,b,*} Neal P. Fox^{a,*}, Maansi Desai^{a,b}, Alia Shafi^a, Edward F. Chang^a

Compared to No Error trials, speech onset was delayed longer for **Speech Arrest** trials than for Motor Errors. Scatterplots show speech onset relative to offset of electrocortical stimulation for all trials by error type. Only **Speech Arrest** trials were reliably delayed until stimulation offset.

	Total	Stimulation Before Speech Onset				Stimulation After Speech Onset				
	stimulation trials	No Error	Motor Error	Speech Arrest	Lexical	No Error	Motor Error	Speech Arrest	Lexical	
dcPCG	89	30	34	6		19				
vcPCG	72	29	22	4		15	2			
drPCG	129	70	28	8	1	17	4	1		
vrPCG	227	113	43	31		38	2			
parsOp	291	159	30	33	3	62	3	1		
parsTri	94	63	5	6		20				
MFG	68	52	2		1	13				
PostCG	66	32	16	1	1	14	2			
IPL	2	2								
STG	6	5		1						
total:	1044	555	180	90	6	198	13	2	0	
Discussion										

- Better understanding/classification of SA informs clinical practice and theoretical models of speech production.
- SA temporarily halts speech output without concomitant motor disruption or general cognitive impairment.
- SA is an error in "speech packaging," an inability to properly package pre-articulatory speech into articulatory code^[4].
- MEs elicited by disruption of articulatory/motor speech programming. • Pars opercularis and precentral gyrus (BA44, vBA6, M1) are areas
- along a continuous dorsal speech production pathway^[5].

Acknowledgements

We thank the patients for their participation in this research. We thank Pierluigi Mantovani and Jon Kleen for their assistance with preprocessing of the data. We thank Nina Dronkers for her assistance in interpreting the data. This work was supported by grants from the NIH (R01-DC012379 and U01-NS098971). E.F.C is a New York Stem Cell Foundation-Robertson Investigator. This research was also supported by The New York Stem Cell Foundation, HHMI, The McKnight Foundation, The Shurl and Kay Curci Foundation, and The William K. Bowes Foundation. NPF was supported by NIH Grant F32 DC015966.

References

[1] Ojemann, G., Ojemann, J., Lettich, E., & Berger, M.S. (1989). Cortical language localization in left, dominant hemisphere. Journal of Neurosurgery, 71, 316-326. [2] Penfield, W. & Rasmussen, T. (1949). Vocalization and arrest of speech. Arch NeurPsych, 61(1), 21-27. [3] Sanai, N., Mirzadeh, Z, & Berger, M.S. (2008). Functional outcome after language mapping for glioma resection. N Engl J Med, 358, 18-27.

[4] Flinker, A., Korzeniewska, A., Shestyuk, A.Y., Franaszcuk, P.J., Dronkers, N.F., Knight, R.T., & Crone, N.E. (2015). Redefining the role of Broca's area in speech. PNAS, 112(9), 2871-2875. [5] Hickock, G. (2012). Computational neuroanatomy of speech production. *Nat Rev Neurosci*, 13(2), 135-145.

^a Department of Neurological Surgery, University of California, San Francisco, California, USA ^b Department of Communication Sciences & Disorders, University of Texas, Austin, Texas, USA * authors contributed equally to completion of this project

 86% of sites where stimulation elicited SA or ME (black dots) were in precentral gyrus (**PCG**) or pars opercularis (**parsOp**). • PCG was divided into 4 quadrants: dorsal/ventral & rostral/caudal. • 71% of SA errors resulted from stimulation to parsOp & vrPCG.

All stimulation trials, split by error type and anatomical region: